Applied Psychophysiology and Biofeedback

, Volume 34, Issue 2, pp 127–133 | Cite as

Low-Vision Rehabilitation by Means of MP-1 Biofeedback Examination in Patients with Different Macular Diseases: A Pilot Study

  • Enzo M. Vingolo
  • Serena Salvatore
  • Sonia Cavarretta


Macular disease is one of the main causes of visual impairment. We studied the efficacy of low-vision rehabilitation by means of MP-1 biofeedback examination in patients with different macular disease. Five patients were enrolled (3 female and 2 male, mean age 53.8 years) and a total of 9 eyes was examined: 2 eyes with vitelliform dystrophy, 1 with a post-traumatic macular scar, 2 with Stargardt disease, 2 with myopic macular degeneration, 2 with cone dystrophy. All the patients underwent the following tests: visual acuity, reading speed, fixation test, MP-1 microperimetry. Low-vision rehabilitation, which lasted 10 weeks, consisted of 10 training sessions of 10 min for each eye, performed once a week using the MP-1 biofeedback examination. Statistical analysis was performed using Student’s t-test. p values less than 0.05 were considered statistically significant. After training all patients displayed an improvement in visual acuity, fixation behaviour, retinal sensitivity and reading speed. Fixation behaviour within the 2° diameter circle improved and was statistically significant for reading speed (p = 0.01). Reading speed improved from a mean value of 64.3 to 92 words/min. Our results show that audio feedback can, by increasing attentional modulation, help the brain to fix the final preferred retinal locus. Audio feedback facilitates stimuli transmission between intraretinal neurons as well as between the retina and brain, which is where the highest level of stimuli processing occurs, thereby probably supporting a “remapping phenomenon”.


Biofeedback Low-vision rehabilitation Macular disease MP-1 microperimeter Preferred retinal locus (PRL) Scotoma 


  1. Alpeter, E., Mackben, M., & Trauzettel-Klosinski, S. (2000). The importance of sustained attention for patients with maculopthies. Vision Research, 40, 1539–1547.CrossRefGoogle Scholar
  2. Buia, C., & Tiesinga, P. (2006). Attentional modulation of firing rate and synchrony in a model cortical network. Journal of Computational Neuroscience, 20, 247–264.PubMedCrossRefGoogle Scholar
  3. Carpineto, P., Ciancaglini, M., Di Antonio, L., Gavalas, C., & Mastropasqua, L. (2007). Fundus microperimetry patterns of fixation in type 2 diabetic patients with diffuse macular edema. Retina, 27, 21–29.PubMedCrossRefGoogle Scholar
  4. Crossland, M. D., Culham, L. E., Kabanarou, S. A., & Rubin, G. S. (2005). Preferred retinal locus development in patients with macular disease. Ophthalmology, 112, 1579–1585.PubMedCrossRefGoogle Scholar
  5. Crossland, M. D., Culham, L. E., & Rubin, G. S. (2004a). Fixation stability and reading speed in patients with newly developed macular disease. Ophthalmic and Physiological Optics, 24, 327–333.PubMedCrossRefGoogle Scholar
  6. Crossland, M. D., Sims, M., Galbraith, R. F., & Rubin, G. S. (2004b). Evaluation of a new quantitative technique to assess the number and extent of preferred retinal loci in macular disease. Vision Research, 44, 1537–1546.PubMedCrossRefGoogle Scholar
  7. Cummings, R. W., Whittaker, S. G., Watson, G. R., & Budd, J. M. (1985). Scanning characters and reading with central scotoma. American Journal of Optometry and Physiological Optics, 62, 833–843.PubMedGoogle Scholar
  8. Fletcher, D. C., & Schuchard, R. A. (1997). Preferred retinal loci, relationship to macular scotoma in a low vision population. Ophthalmology, 104, 632–638.PubMedGoogle Scholar
  9. Frennesson, C., Jakobsson, P., & Nilsson, U. L. (1995). A computer and video display based system for training eccentric viewing in macular degeneration with an absolute central scotoma. Documenta Ophthalmologica, 9, 9–16.CrossRefGoogle Scholar
  10. Friedman, D. S., O’ Colmain, B. J., Munoz, B., et al. (2004). Eye diseases prevalence research group. Prevalence of age-related macular degeneration in the United States. Archives of Ophthalmology, 122, 564–572.PubMedCrossRefGoogle Scholar
  11. Fujii, G. Y., de Juan, E., Jr, Sunness. J., Humayun, M. S., Pieramici, D. J., & Chang, T. S. (2002). Patient selection for macular translocation surgery using the scanning laser ophthalmoscope. Ophthalmology, 109, 1737–1744.PubMedCrossRefGoogle Scholar
  12. Lei, H., & Schuchard, R. A. (1997). Using two preferred retinal loci for different lighting conditions in patients with central scotoma. Investigative Ophthalmology and Visual Science, 38, 1812–1818.PubMedGoogle Scholar
  13. McMahon, T. T., Hansen, M., & Viana, M. (1991). Fixation characteristics in macular disease. Investigative Ophthalmology and Visual Science, 32, 567–574.PubMedGoogle Scholar
  14. Nilsson, U. L., Frennesson, C., & Nilsson, S. E. (2003). Patients with AMD and a large absolute central scotoma can be trained successfully to use eccentric viewing, as demonstrated in a scanning laser ophthalmoscope. Vision Research, 43, 1777–1778.PubMedCrossRefGoogle Scholar
  15. Nilsson, U. L., & Nilsson, S. E. (1986). Rehabilitation of the visually handicapped with advanced macular degeneration. A follow-up study at the Low Vision Clinic, Department of Ophthalmology, University of Linköping. Documenta Ophthalmologica, 62, 345–367.PubMedCrossRefGoogle Scholar
  16. Petre, K. L., Hazel, C. A., Fine, E. M., & Rubin, G. S. (2000). Reading with eccentric fixation is faster in inferior visual field than in left visual field. Optometry and Vision Science, 77, 34–39.PubMedCrossRefGoogle Scholar
  17. Pidcoe, P. E., & Wetzel, P. A. (2006). Oculomotor tracking strategy in normal subjects with and without simulated scotoma. Investigative Ophthalmology and Visual Science, 47, 169–177.PubMedCrossRefGoogle Scholar
  18. Rohrschneider, K., Springer, C., Bultmann, S., & Volker, H. E. (2002). Microperimetry-comparison between the micro perimeter 1 and scanning laser ophthalmoscope-fundus perimetry. American Journal of Ophthalmology, 139, 125–134.CrossRefGoogle Scholar
  19. Romayananda, N., Wong, S. W., Elzeneiny, I. H., & Chan, G. H. (1982). Prismatic scanning method for improving visual acuity in patients with low vision. Ophthalmology, 89, 937–949.PubMedGoogle Scholar
  20. Sawa, M., Gomi, F., Toyoda, A., Ikuno, Y., Fujikado, T., & Tano, Y. (2006). A microperimeter that provides fixation pattern and retinal sensitivity measurement. Japanese Journal of Ophthalmology, 50, 111–115.PubMedCrossRefGoogle Scholar
  21. Schuchard, R. A. (2005). Preferred retinal loci and macular scotoma characteristics in patients with age-related macular degeneration. Canadian Journal of Ophthalmology, 40, 303–312.PubMedGoogle Scholar
  22. Springer, C., Bultmann, S., Volcker, H. E., & Rohrschneider, K. (2005). Fundus perimetry with microperimeter 1 in normal individuals, comparison with conventional threshold perimetry. Ophthalmology, 112, 848–854.PubMedCrossRefGoogle Scholar
  23. Steinman, R. M. (1965). Effect of target size, luminance, and color on monocular fixation. Journal of the Optical Society of America, 55, 1158–1165.CrossRefGoogle Scholar
  24. Steinman, R. M., Haddad, G. M., Skavenski, A. A., & Wyman, D. (1973). Miniature eye Movement. Science, 181, 810–819.PubMedCrossRefGoogle Scholar
  25. Sunness, J. S., Appelgate, C. A., Haselwood, D., & Rubin, G. S. (1996). Fixation patterns and reading rates in eyes with central scotomas from advanced atrophic age related macular degeneration and Stargardt disease. Opthalmology, 103, 1458–1466.Google Scholar
  26. Whittaker, S. G., Cummings, R. W., & Swieson, L. R. (1991). Saccade control without a fovea. Vision Research, 31, 2209–2218.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Enzo M. Vingolo
    • 1
  • Serena Salvatore
    • 2
  • Sonia Cavarretta
    • 2
  1. 1.Department of Ophthalmology, Alfredo Fiorini Hospital“La Sapienza” University, Polo PontinoTerracinaItaly
  2. 2.Department of Ophthalmology“La Sapienza” UniversityRomeItaly

Personalised recommendations