Traumatic Brain Injury Rehabilitation: QEEG Biofeedback Treatment Protocols

Article

Abstract

Interventions for improvement of cognitive problems in patients with traumatic brain injury (TBI) include electroencephalography biofeedback, also known as neurofeedback. Quantitative electroencephalography (QEEG) patterns are assessed in TBI patients and then compared to a database obtained from a normative population. Deviations in QEEG patterns from the normative group are the basis for an intervention plan. While QEEG patterns, obtained under an eyes closed, resting condition, provide information about deviations at rest, QEEG patterns obtained while the patient engages in cognitive tasks reflect specific deficiencies in brain functioning. This paper reviews and assesses QEEG patterns collected under both resting conditions as well as cognitive tasks. The article provides a theoretical and empirical base for QEEG interventions with TBI.

Keywords

EEG biofeedback Traumatic brain injury Cognitive rehabilitation Activation QEEG Memory rehabilitation Cognitive challenge 

References

  1. Bendlin, B. B., Ries, M. L., Lazar, M., Alexander, A. L., Dempsey, R. J., Rowley, H. A., et al. (2008). Longitudinal changes in patients with traumatic brain injury assessed with diffusion-tensor and volumetric imaging. NeuroImage, 42(2), 503–514. doi:10.1016/j.neuroimage.2008.04.254.PubMedCrossRefGoogle Scholar
  2. Braver, E. R., Ferguson, S. A., Greene, M. A., & Lund, A. K. (1997). Reductions in deaths in frontal crashes among right front passengers in vehicles equipped with passenger air bags. Journal of the American Medical Association, 278(17), 1437–1439. doi:10.1001/jama.278.17.1437.PubMedCrossRefGoogle Scholar
  3. Byers, A. P. (1995). Neurofeedback therapy for a mild head injury. Journal of Neurotherapy, 1(1), 22–37. doi:10.1300/J184v01n01_04.CrossRefGoogle Scholar
  4. Carter, G. C. (1987). Coherence and time delay estimation. Proceedings of the Institute of Electrical and Electronics Engineering, 75, 236–255.Google Scholar
  5. CDC. (1999). Facts about concussion and brain injury. Atlanta, GA: Center for Disease Control.Google Scholar
  6. Collura, T. F. (2008). Towards a coherent view of brain connectivity. Journal of Neurotherapy, 12(2/3), 99–110. doi:10.1080/10874200802433274.CrossRefGoogle Scholar
  7. Defilippis, N. A., & McCampbell, E. (1979). Category test. Odessa, FL: Psychological Assessment Resources.Google Scholar
  8. Duff, J. (2004). The usefulness of quantitative EEG (QEEG) and neurotherapy in the assessment and treatment of post-concussion syndrome. Clinical EEG and Neuroscience, 35(4), 198–209.PubMedGoogle Scholar
  9. Harmony, T., Hinojosa, G., Marosi, E., Becker, J., Rodriguez, M., Reyes, A., et al. (1990). Correlation between EEG spectral parameters and an educational evaluation. The International Journal of Neuroscience, 54(1–2), 147–155. doi:10.3109/00207459008986630.PubMedCrossRefGoogle Scholar
  10. Heaton, R. K. (1981). Wisconsin card sorting test. Odessa, FL: Psychological Assessment Resources, Inc.Google Scholar
  11. Hooshmand, H., Beckner, E., & Radfar, F. (1989). Technical and clinical aspects of topographic brain mapping. Clinical EEG (Electroencephalography), 20(4), 235–247.Google Scholar
  12. Hughes, J. R., & John, E. R. (1999). Conventional and quantitative electroencephalography in psychiatry. The Journal of Neuropsychiatry and Clinical Neurosciences, 11(2), 190–208.PubMedGoogle Scholar
  13. Jasper, H. H. (1958). Report on the committee on methods of clinical examination in electroencephalography. Electroencephalography and Clinical Neurophysiology, 10, 371–375.Google Scholar
  14. Joffe, D. (1992). Lexicor NRS-24 BioLex operator’s manual. Boulder: Lexicor Corporation.Google Scholar
  15. John, E. R., Prichep, L. S., Fridman, J., & Easton, P. (1988). Neurometrics: Computer-assisted differential diagnosis of brain dysfunctions. Science, 239(4836), 162–169. doi:10.1126/science.3336779.PubMedCrossRefGoogle Scholar
  16. Keller, I. (2001). Neurofeedback therapy of attention deficits in patients with traumatic brain injury. Journal of Neurotherapy, 5, 19–33. doi:10.1300/J184v05n01_03.CrossRefGoogle Scholar
  17. Lavoie, M. E., Dupuis, F., Johnston, K. M., Leclerc, S., & Lassonde, M. (2004). Visual P300 effects beyond symptoms in concussed college athletes. Journal of Clinical and Experimental Neuropsychology, 26(1), 55–73. doi:10.1076/jcen.26.1.55.23936.PubMedCrossRefGoogle Scholar
  18. Leon-Carrion, J., Martin-Rodriguez, J. F., Damas-Lopez, J., Martin, J. M., & Dominguez-Morales, M. R. (2008). A QEEG index of level of functional dependence for people sustaining acquired brain injury: The Seville independence index (SINDI). Brain Injury: [BI], 22(1), 61–74. doi:10.1080/02699050701824143.CrossRefGoogle Scholar
  19. Nuwer, M. R., Hovda, D. A., Schrader, L. M., & Vespa, P. M. (2005). Routine and quantitative EEG in mild traumatic brain injury. Clinical Neurophysiology, 116(9), 2001–2025. doi:10.1016/j.clinph.2005.05.008.PubMedCrossRefGoogle Scholar
  20. Randolph, C., & Miller, M. H. (1988). EEG and cognitive performance following closed head injury. Neuropsychobiology, 20(1), 43–50. doi:10.1159/000118471.PubMedCrossRefGoogle Scholar
  21. Rutgers, D. R., Toulgoat, F., Cazejust, J., Fillard, P., Lasjaunias, P., & Ducreux, D. (2008). White matter abnormalities in mild traumatic brain injury: A diffusion tensor imaging study. AJNR American Journal of Neuroradiology, 29(3), 514–519. doi:10.3174/ajnr.A0856.PubMedCrossRefGoogle Scholar
  22. Salmond, C. H., Menon, D. K., Chatfield, D. A., Williams, G. B., Pena, A., Sahakian, B. J., et al. (2006). Diffusion tensor imaging in chronic head injury survivors: Correlations with learning and memory indices. NeuroImage, 29(1), 117–124.PubMedCrossRefGoogle Scholar
  23. Scheibel, R. S., Newsome, M. R., Steinberg, J. L., Pearson, D. A., Rauch, R. A., Mao, H., et al. (2007). Altered brain activation during cognitive control in patients with moderate to severe traumatic brain injury. Neurorehabilitation and Neural Repair, 21(1), 36–45. doi:10.1177/1545968306294730.PubMedCrossRefGoogle Scholar
  24. Schoenberger, N. E., Shif, S. C., Esty, M. L., Ochs, L., & Matheis, R. J. (2001). Flexyx neurotherapy system in the treatment of traumatic brain injury: An initial evaluation. The Journal of Head Trauma Rehabilitation, 16(3), 260–274. doi:10.1097/00001199-200106000-00005.PubMedCrossRefGoogle Scholar
  25. SKIL. (2008). Analysis software. http://www.skiltopo.com/. Accessed 1 July 2008.
  26. Stephens, J. (2006). The effectiveness of EEG biofeedback and cognitive rehabilitation as treatments for moderate to severe traumatic brain injury. Wellington, New Zealand: Victoria University.Google Scholar
  27. Tebano, M. T., Cameroni, M., Gallozzi, G., Loizzo, A., Palazzino, G., Pezzini, G., et al. (1988). EEG spectral analysis after minor head injury in man. Electroencephalography and Clinical Neurophysiology, 70(2), 185–189. doi:10.1016/0013-4694(88)90118-6.PubMedCrossRefGoogle Scholar
  28. Thatcher, R. W., Walker, R. A., Gerson, I., & Geisler, F. (1989). EEG discriminate analysis of mild head trauma. Electroencephalography and Clinical Neurophysiology, 73, 93–106. doi:10.1016/0013-4694(89)90188-0.CrossRefGoogle Scholar
  29. Thatcher, R. W., Camacho, M., Salazar, A., Linden, C., Biver, C., & Clarke, L. (1997). Quantitative MRI of the gray-white matter distribution in traumatic brain injury. Journal of Neurotrauma, 14(1), 1–14.PubMedCrossRefGoogle Scholar
  30. Thatcher, R. W., Biver, C., McAlaster, R., & Salazar, A. (1998). Biophysical linkage between MRI and EEG coherence in closed head injury. NeuroImage, 8(4), 307–326. doi:10.1006/nimg.1998.0365.PubMedCrossRefGoogle Scholar
  31. Thatcher, R. W., North, D. M., Curtin, R. T., Walker, R. A., Biver, C. J., Gomez, J. F., et al. (2001). An EEG severity index of traumatic brain injury. The Journal of Neuropsychiatry and Clinical Neurosciences, 13(1), 77–87. doi:10.1176/appi.neuropsych.13.1.77.PubMedGoogle Scholar
  32. Thatcher, R. W., North, D., & Biver, C. (2005). EEG and intelligence: Relations between EEG coherence, EEG phase delay and power. Clinical Neurophysiology, 116(9), 2129–2141. doi:10.1016/j.clinph.2005.04.026.PubMedCrossRefGoogle Scholar
  33. Thompson, J., Sebastianelli, W., & Slobounov, S. (2005). EEG and postural correlates of mild traumatic brain injury in athletes. Neuroscience Letters, 377(3), 158–163. doi:10.1016/j.neulet.2004.11.090.PubMedCrossRefGoogle Scholar
  34. Thornton, K. E. (1999). Exploratory investigation into mild brain injury and discriminant analysis with high frequency bands (32–64 Hz). Brain Injury: [BI], 13(7), 477–488. doi:10.1080/026990599121395.CrossRefGoogle Scholar
  35. Thornton, K. E. (2000). Exploratory analysis: Mild head injury, discriminant analysis with high frequency bands (32–64 Hz) under attentional activation conditions & does time heal? Journal of Neurotherapy, 3(3), 1–10. doi:10.1300/J184v03n03_01.CrossRefGoogle Scholar
  36. Thornton, K. E. (2001). Method for improving memory by identifying and using QEEG parameters correlated to specific cognitive functioning (Patent, 6309361, B1).Google Scholar
  37. Thornton, K. E. (2002). Electrophysiology (QEEG) of effective reading memory: Towards a generator/activation theory of the mind. Journal of Neurotherapy, 6(3), 37–66. doi:10.1300/J184v06n03_04.CrossRefGoogle Scholar
  38. Thornton, K. E. (2003). The electrophysiological effects of a brain injury on auditory memory functioning. The QEEG correlates of impaired memory. Archives of Clinical Neuropsychology, 18(4), 363–378. doi:10.1016/S0887-6177(02)00139-7.PubMedCrossRefGoogle Scholar
  39. Thornton, K. E. (2007). Value of eyes closed vs. activation approaches to cognitive effectiveness and QEEG correlates of cognitive effectiveness. Paper presented at the International Society for Neuronal Regulation, San Diego, CA.Google Scholar
  40. Thornton, K. E., & Carmody, D. P. (2005). Electroencephalogram biofeedback for reading disability and traumatic brain injury. Child and Adolescent Psychiatric Clinics of North America, 14(1), 137–162. doi:10.1016/j.chc.2004.07.001. vii.PubMedCrossRefGoogle Scholar
  41. Thornton, K. E., & Carmody, D. P. (2008). Traumatic brain injury rehabilitation: Efficacy review of computers, strategies, QEEG-guided biofeedback, and medications. Applied Psychophysiology and Biofeedback, 33(2), 101–124. doi:10.1007/s10484-008-9056-z.PubMedCrossRefGoogle Scholar
  42. Thornton, K. E., & Carmody, D. P. (2009). Eyes-closed and activation databases in predicting cognitive effectiveness and the inefficiency hypothesis. Journal of Neurotherapy (in press).Google Scholar
  43. Tinius, T. P., & Tinius, K. A. (2000). Changes after EEG biofeedback and cognitive retraining in adults with mild traumatic brain injury and attention deficit hyperactivity disorder. Journal of Neurotherapy, 4(2), 27–44. doi:10.1300/J184v04n02_05.CrossRefGoogle Scholar
  44. Turner, G. R., & Levine, B. (2008). Augmented neural activity during executive control processing following diffuse axonal injury. Neurology, 71(11), 812–818. doi:10.1212/01.wnl.0000325640.18235.1c.PubMedCrossRefGoogle Scholar
  45. Walker, J. E., Norman, C. A., & Weber, R. K. (2002). Impact of QEEG-guided coherence training for patients with a mild closed head injury. Journal of Neurotherapy, 6(2), 31–45. doi:10.1300/J184v06n02_05.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Brain FoundationEdisonUSA
  2. 2.Institute for the Study of Child Development, Robert Wood Johnson Medical SchoolUniversity of Medicine and Dentistry of New JerseyNew BrunswickUSA

Personalised recommendations