Applied Psychophysiology and Biofeedback

, Volume 34, Issue 1, pp 37–51 | Cite as

Event-related Potential Study of Novelty Processing Abnormalities in Autism

  • Estate SokhadzeEmail author
  • Joshua Baruth
  • Allan Tasman
  • Lonnie Sears
  • Grace Mathai
  • Ayman El-Baz
  • Manuel F. Casanova


To better understand visual processing abnormalities in autism we studied the attention orienting related frontal event potentials (ERP) and the sustained attention related centro-parietal ERPs in a three stimulus oddball experiment. The three stimulus oddball paradigm was aimed to test the hypothesis that individuals with autism abnormally orient their attention to novel distracters as compared to controls. A dense-array 128 channel EGI electroencephalographic (EEG) system was used on 11 high-functioning children and young adults with autism spectrum disorder (ASD) and 11 age-matched, typically developing control subjects. Patients with ASD showed slower reaction times but did not differ in response accuracy. At the anterior (frontal) topography the ASD group showed significantly higher amplitudes and longer latencies of early ERP components (e.g., P100, N100) to novel distracter stimuli in both hemispheres. The ASD group also showed prolonged latencies of late ERP components (e.g., P2a, N200, P3a) to novel distracter stimuli in both hemispheres. However, differences were more profound in the right hemisphere for both early and late ERP components. Our results indicate augmented and prolonged early frontal potentials and a delayed P3a component to novel stimuli, which suggest low selectivity in pre-processing and later-stage under-activation of integrative regions in the prefrontal cortices. Also, at the posterior (centro-parietal) topography the ASD group showed significantly prolonged N100 latencies and reduced amplitudes of the N2b component to target stimuli. In addition, the latency of the P3b component was prolonged to novel distracters in the ASD group. In general, the autistic group showed prolonged latencies to novel stimuli especially in the right hemisphere. These results suggest that individuals with autism over-process information needed for the successful differentiation of target and novel stimuli. We propose the potential application of ERP evaluations in a novelty task as outcome measurements in the biobehavioral treatment (e.g., EEG biofeedback, TMS) of autism.


Event-related potentials Autism Attention Novelty 


  1. Aman, M. G., & Singh, N. N. (1994). Aberrant behavior checklist—community. Supplementary manual. East Aurora, NY: Slosson Educational Publications.Google Scholar
  2. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (DSM-IV-TR) text revised (4th ed.). Washington, DC: American Psychiatric Association.Google Scholar
  3. Baron-Cohen, S. (2004). The cognitive neuroscience of autism. Journal of Neurology, Neurosurgery, and Psychiatry, 75, 945–948. doi: 10.1136/jnnp.2003.018713.PubMedCrossRefGoogle Scholar
  4. Bekker, E. M., Kenemans, J. L., & Verbaten, M. N. (2004). Electrophysiological correlates of attention, inhibition, sensitivity and bias in a continuous performance task. Clinical Neurophysiology, 115, 2001–2013. doi: 10.1016/j.clinph.2004.04.008.PubMedCrossRefGoogle Scholar
  5. Belmonte, M. K. (2000). Abnormal attention in autism shown by steady-state visual evoked potentials. Autism, 4, 269–285. doi: 10.1177/1362361300004003004.CrossRefGoogle Scholar
  6. Belmonte, M. K., Allen, G., Beckel-Mitchener, A., Boulanger, L., Carper, R., & Webb, S. J. (2004a). Autism and abnormal development of brain connectivity. The Journal of Neuroscience, 24, 9228–9231. doi: 10.1523/JNEUROSCI.3340-04.2004.PubMedCrossRefGoogle Scholar
  7. Belmonte, M. K., Cook, E. H., Anderson, G. M., Rubenstein, J. L. R., Greenhough, W. T., Beckel-Mitchener, A., et al. (2004b). Autism as a disorder of neural information processing: Directions for research and targets for therapy. Molecular Psychiatry, 9, 646–663.PubMedGoogle Scholar
  8. Belmonte, M. K., & Yurgelun-Todd, D. A. (2003a). Functional anatomy of impaired selective attention and compensatory processing in autism. Cognitive Brain Research, 17, 651–664. doi: 10.1016/S0926-6410(03)00189-7.PubMedCrossRefGoogle Scholar
  9. Belmonte, M. K., & Yurgelun-Todd, D. A. (2003b). Anatomic dissociation of selective and suppressive processes in visual attention. NeuroImage, 19, 180–189.PubMedGoogle Scholar
  10. Bertone, A., Mottron, L., Jelenic, P., & Faubert, J. (2005). Enhanced and diminished visuo-spatial information processing in autism depend on stimulus complexity. Brain, 128, 2430–2441. doi: 10.1093/brain/awh561.PubMedCrossRefGoogle Scholar
  11. Bishop, D. V. M. (1993). Annotation: Autism, executive functions and theory of mind: A neuropsychological perspective. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 34, 279–293. doi: 10.1111/j.1469-7610.1993.tb00992.x.PubMedCrossRefGoogle Scholar
  12. Bodfish, J. W., Symons, F. S., Parker, D. E., & Lewis, M. H. (2000). Varieties of repetitive behavior in autism: Comparisons to mental retardation. Journal of Autism and Developmental Disorders, 30, 237–243. doi: 10.1023/A:1005596502855.PubMedCrossRefGoogle Scholar
  13. Bomba, M. D., & Pang, E. W. (2004). Cortical auditory evoked potentials in autism: A review. International Journal of Psychophysiology, 53, 161–169. doi: 10.1016/j.ijpsycho.2004.04.001.PubMedCrossRefGoogle Scholar
  14. Brock, J., Brown, C. C., Boucher, J., & Rippon, G. (2002). The temporal binding deficit hypothesis of autism. Development and Psychopathology, 14, 209–224. doi: 10.1017/S0954579402002018.PubMedCrossRefGoogle Scholar
  15. Brown, C. (2005). EEG in autism: Is there just too much going on in there? In M. F. Casanova (Ed.), Recent developments in autism research (pp. 109–126). New York: Nova Science Publishers.Google Scholar
  16. Brown, C., Gruber, T., Boucher, J., Rippon, G., & Brock, J. (2005). Gamma abnormalities during perception of illusory figures in autism. Cortex, 41, 364–376. doi: 10.1016/S0010-9452(08)70273-9.PubMedCrossRefGoogle Scholar
  17. Bruneau, N., Roux, S., Adrien, J. L., & Bathelemy, C. (1999). Auditory associative cortex dysfunction in children with autism: Evidence from late auditory evoked potentials (N 1 wave-T Complex). Clinical Neurophysiology, 110, 1927–1934. doi: 10.1016/S1388-2457(99)00149-2.PubMedCrossRefGoogle Scholar
  18. Burack, J. A. (1994). Selective attention deficits in persons with autism: Preliminary evidence for inefficient attentional lens. Journal of Abnormal Psychology, 103, 515–543. doi: 10.1037/0021-843X.103.3.535.CrossRefGoogle Scholar
  19. Buxhoeveden, D. P., & Casanova, M. F. (2002). The minicolumn and evolution of the brain. Brain, Behavior and Evolution, 60(3), 125–151. doi: 10.1159/000065935.PubMedCrossRefGoogle Scholar
  20. Casanova, M. F. (2005). Minicolumnar pathology in autism. In M. F. Casanova (Ed.), Recent developments in autism research (pp. 133–144). New York: Nova Biomedical Books.Google Scholar
  21. Casanova, M. F. (2006). Neuropathological and genetic findings in autism: The significance of a putative minicolumnopathy. The Neuroscientist, 12(5), 435–441. doi: 10.1177/1073858406290375.PubMedCrossRefGoogle Scholar
  22. Casanova, M. F., Buxhoeveden, D. P., & Brown, C. (2002a). Clinical and macroscopic correlates of minicolumnar pathology in autism. Journal of Child Neurology, 17, 692–695. doi: 10.1177/088307380201700908.PubMedCrossRefGoogle Scholar
  23. Casanova, M. F., Buxhoeveden, D., & Gomez, J. (2003). Disruption in the inhibitory architecture of the cell minicolumn: Implications for autism. The Neuroscientist, 9, 496–507. doi: 10.1177/1073858403253552.PubMedCrossRefGoogle Scholar
  24. Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., & Roy, E. (2002b). Minicolumnar pathology in autism. Neurology, 58, 428–432.PubMedGoogle Scholar
  25. Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., & Roy, E. (2002c). Neuronal density and architecture (gray level index) in the brains of autistic patients. Journal of Child Neurology, 17, 515–521. doi: 10.1177/088307380201700708.PubMedCrossRefGoogle Scholar
  26. Ciesielski, K. T., Courchesne, E., & Elmasian, R. (1990). Effects of focused attention tasks on event-related potentials in autistic and normal individuals. Clinical Neurophysiology, 75, 207–220. doi: 10.1016/0013-4694(90)90174-I.CrossRefGoogle Scholar
  27. Ciesielski, K. T., Knoght, J. E., Prince, R. J., Harris, R. J., & Handmaker, S. D. (1995). Event-related potentials in cross-modal divided attention in autism. Neuropsychologia, 33, 225–246. doi: 10.1016/0028-3932(94)00094-6.PubMedCrossRefGoogle Scholar
  28. Clark, V. P., Fan, S., & Hillyard, S. A. (1995). Identification of early visual evoked potential generators by retinotopic and topographic analyses. Human Brain Mapping, 2, 170–187. doi: 10.1002/hbm.460020306.CrossRefGoogle Scholar
  29. Coben, R. (2007). Autistic spectrum disorder: Outcome of EEG coherence training targeting social skills deficits. Presented at the 15th ISNR annual conference, San Diego, CA, September 6–9.Google Scholar
  30. Coben, R. (2008). Efficacy of connectivity guided neurofeedback for autistic spectrum disorder: Analysis of 75 cases with a 1–2 year follow-up. Presented at the 16th ISNR annual conference, San Antonio, TX, August 26–31.Google Scholar
  31. Coben, R., Clarke, A. R., Hudspeth, W., & Barry, R. (2008). EEG power and coherence in autistic spectrum disorder. Clinical Neurophysiology, 119(5), 1002–1009. doi: 10.1016/j.clinph.2008.01.013.PubMedCrossRefGoogle Scholar
  32. Coben, R., & Padolsky, I. (2007). Assessment-guided neurofeedback for autistic spectrum disorder. Journal of Neurotherapy, 11(1), 5–23. doi: 10.1300/J184v11n01_02.CrossRefGoogle Scholar
  33. Coles, M. G. H., & Rugg, M. D. (1995). Event-related brain potentials: An introduction. In M. D. Rugg & M. G. H. Coles (Eds.), Electrophysiology of mind. Event-related brain potentials and cognition (pp. 40–85). Oxford: Oxford University Press.Google Scholar
  34. Constantino, J. N., & Gruber, C. P. (2005). The social responsiveness scale (SRS) manual. Los Angeles, CA: Western Psychological Services.Google Scholar
  35. Courchesne, E., Karns, C. M., Davis, H. R., Ziccardi, R., Carper, R. A., & Tigue, Z. D. (2001). Unusual brain growth patterns in early life in patients with autistic disorder an MRI study. Neurology, 57, 245–254.PubMedGoogle Scholar
  36. Courchesne, E., Lincoln, A. J., Yeung-Courchesne, R., Elmasian, R., & Grillon, C. (1989). Pathophysiologic findings in nonretarded autism and receptive developmental disorder. Journal of Autism and Developmental Disorders, 19, 1–17. doi: 10.1007/BF02212714.PubMedCrossRefGoogle Scholar
  37. Courchesne, E., & Pierce, K. (2005). Brain overgrowth in autism during a critical time in development: Implications for frontal pyramidal neuron and interneuron development and connectivity. International Journal of Developmental Neuroscience, 23, 153–170. doi: 10.1016/j.ijdevneu.2005.01.003.PubMedCrossRefGoogle Scholar
  38. De Felipe, J. (1999). Chandelier cells and epilepsy. Brain, 122, 1807–1822. doi: 10.1093/brain/122.10.1807.CrossRefGoogle Scholar
  39. De Felipe, J. (2004). Cortical microanatomy and human brain disorders: Epilepsy. Cortex, 40(1), 232–233. doi: 10.1016/S0010-9452(08)70962-6.CrossRefGoogle Scholar
  40. Donchin, E., & Coles, M. G. H. (1988). Is the p300 component a manifestation of context updating. The Behavioral and Brain Sciences, 11, 357–427.CrossRefGoogle Scholar
  41. Donkers, F. C. L., & van Boxtel, G. J. M. (2004). The N2 in go/no-go tasks reflects conflict monitoring not response inhibition. Brain and Cognition, 56, 165–176.PubMedGoogle Scholar
  42. Engel, A. K., Konig, P., Kreiter, A. K., & Singer, W. (1991). Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science, 252, 218–226. doi: 10.1126/science.252.5009.1177.CrossRefGoogle Scholar
  43. Falkenstein, M., Hoormann, J., & Hohnsbein, J. (1999). ERP components in go/nogo tasks and their relation to inhibition. Acta Psychologica, 101, 267–291. doi: 10.1016/S0001-6918(99)00008-6.PubMedCrossRefGoogle Scholar
  44. Falkenstein, M., Hoormann, J., & Hohnsbein, J. (2002). Inhibition-related ERP components: Variation with modality, age, and time-on-task. Journal of Psychophysiology, 16, 167–175. doi: 10.1027//0269-8803.16.3.167.CrossRefGoogle Scholar
  45. Favorov, O. V., & Kelly, D. G. (1994a). Minicolumnar organization within somatosensory cortical segregates, I: Development of afferent connections. Cerebral Cortex (New York, N.Y.), 4, 408–427. doi: 10.1093/cercor/4.4.408.CrossRefGoogle Scholar
  46. Favorov, O. V., & Kelly, D. G. (1994b). Minicolumnar organization within somatosensory cortical segregates, II: Emergent functional properties. Cerebral Cortex (New York, N.Y.), 4, 428–442. doi: 10.1093/cercor/4.4.428.CrossRefGoogle Scholar
  47. Ferree, T. C., Luu, P., Russell, G. S., & Tucker, D. M. (2001). Scalp electrode impedance, infection risk, and EEG data quality. Clinical Neurophysiology, 112, 444–536. doi: 10.1016/S1388-2457(00)00533-2.CrossRefGoogle Scholar
  48. Ferri, R., Elia, M., Agarwal, N., Lanuzza, B., Musumeci, S. A., & Pennisi, G. (2003). The mismatch negativity and the P3a components of the auditory event-related potentials in autistic low-functioning subjects. Clinical Neurophysiology, 114, 1671–1680. doi: 10.1016/S1388-2457(03)00153-6.PubMedCrossRefGoogle Scholar
  49. First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (2001). Structured clinical interview for DSM-IV-TR axis I disorders—non-patient edition (SCID-NP). New York: New York State Psychiatric Institute.Google Scholar
  50. Fletcher, E. M., Kussmaul, C. L., & Mangun, G. R. (1996). Estimation of interpolation errors in scalp topographic mapping. Electroctoencephalography and Clinical Neuraphysiology, 98, 422–434. doi: 10.1016/0013-4694(96)95135-4.CrossRefGoogle Scholar
  51. Friedman, D., Simpson, G. V., & Hamberger, M. (1993). Age-related changes in scalp topography to novel and target stimuli. Psychophysiology, 30, 383–396. doi: 10.1111/j.1469-8986.1993.tb02060.x.PubMedCrossRefGoogle Scholar
  52. Frith, U., & Happé, F. (1994). Autism: Beyond theory of mind. Cognition, 50, 115–132. doi: 10.1016/0010-0277(94)90024-8.PubMedCrossRefGoogle Scholar
  53. Gomez-Gonzales, C. M., Clark, V. P., Fan, S., Luck, S., & Hillyard, S. A. (1994). Sources of attention-sensitive visual event-related potentials. Brain Topography, 7, 41–51. doi: 10.1007/BF01184836.CrossRefGoogle Scholar
  54. Goto, Y., Brigell, M. G., & Parmeggiani, L. (1996). Dipole-modeling of the visual evoked P300. Journal of Psychosomatic Research, 41, 71–79. doi: 10.1016/0022-3999(96)00062-1.PubMedCrossRefGoogle Scholar
  55. Griffith, E. M., Pennington, B. F., Wehner, E. A., & Rogers, S. J. (1999). Executive functions in young children with autism. Child Development, 70, 817–832. doi: 10.1111/1467-8624.00059.PubMedCrossRefGoogle Scholar
  56. Guy, W. (1976). Clinical global impressions. ECDEU assessment manual for psychopharmacology. Rockville, MD: National Institute of Mental Health.Google Scholar
  57. Halgren, E., Marinkovic, K., & Chauvel, P. (1998). Generators of the late cognitive potentials in auditory and visual oddball tasks. Electroencephalography and Clinical Neurophysiology, 106, 156–164. doi: 10.1016/S0013-4694(97)00119-3.PubMedCrossRefGoogle Scholar
  58. Happé, F. (1999). Autism: Cognitive deficit or cognitive style? Trends in Cognitive Sciences, 3, 216–222. doi: 10.1016/S1364-6613(99)01318-2.PubMedCrossRefGoogle Scholar
  59. Heinze, H. J., Mangun, G., Burchert, W., Hinrichs, H., Scholz, M., Münte, T. F., et al. (1994). Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature, 372, 543–546. doi: 10.1038/372543a0.PubMedCrossRefGoogle Scholar
  60. Herbert, M. R., Zeiger, A. D., Deutsch, C. K., O’Brien, L., Kennedy, D. N., Filipek, P. A., et al. (2005). Brain asymmetries in autism and developmental language disorder: A nested whole-brain analysis. Brain, 128, 213–226. doi: 10.1093/brain/awh330.PubMedCrossRefGoogle Scholar
  61. Herrmann, C. S., & Knight, R. T. (2001). Mechanisms of human attention: Event related potentials and oscillations. Neuroscience and Biobehavioral Reviews, 25, 465–476. doi: 10.1016/S0149-7634(01)00027-6.PubMedCrossRefGoogle Scholar
  62. Hill, E. L. (2004). Evaluating the theory of executive dysfunction in autism. Developmental Review, 24, 189–233. doi: 10.1016/j.dr.2004.01.001.CrossRefGoogle Scholar
  63. Hillyard, S. A., & Annlo-Vento, L. (1998). Event-related brain potentials in the study of visual selective attention. Proceedings of the National Academy of Sciences of the United States of America, 95, 781–787. doi: 10.1073/pnas.95.3.781.PubMedCrossRefGoogle Scholar
  64. Hughes, C., Russell, J., & Robbins, T. W. (1994). Evidence for executive dysfunction in autism. Neuropsychologia, 32, 477–492. doi: 10.1016/0028-3932(94)90092-2.PubMedCrossRefGoogle Scholar
  65. Jarusiewicz, B. (2002). Efficacy of neurofeedback for children in the autistic spectrum: A pilot study. Journal of Neurotherapy, 6, 39–49. doi: 10.1300/J184v06n04_05.CrossRefGoogle Scholar
  66. Johnson, M. H. (1999). Cortical plasticity in normal and abnormal cognitive development: Evidence and working hypotheses. Development and Psychopathology, 11, 419–437. doi: 10.1017/S0954579499002138.PubMedCrossRefGoogle Scholar
  67. Katayama, J., & Polich, J. (1998). Stimulus context determines P3a and P3b. Psychophysiology, 35, 23–33. doi: 10.1017/S0048577298961479.PubMedCrossRefGoogle Scholar
  68. Kemner, C., van der Gaag, R. J., Verbaten, M., & van Engeland, H. (1999). ERP differences among subtypes of pervasive developmental disorders. Biological Psychiatry, 46(6), 781–789. doi: 10.1016/S0006-3223(99)00003-7.PubMedCrossRefGoogle Scholar
  69. Kemner, C., Verbaten, M. N., Cuperus, J. M., Camfferman, G., & Van Engeland, H. (1994). Visual and somatosensory event-related brain potentials in autistic children and three different control groups. Electroencephalography and Clinical Neurophysiology, 92, 225–237. doi: 10.1016/0168-5597(94)90066-3.PubMedCrossRefGoogle Scholar
  70. Kemner, C., Verbaten, M. N., Cuperus, J. M., Camfferman, G., & Van Engeland, H. (1995). Auditory event-related potentials in autistic children and three different control groups. Biological Psychiatry, 38, 150–165. doi: 10.1016/0006-3223(94)00247-Z.PubMedCrossRefGoogle Scholar
  71. Kenemans, J. L., Kok, A., & Smulders, F. T. (1993). Event-related potentials to conjunctions of spatial frequency and orientation as a function of stimulus parameters and response requirements. Electroencephalography and Clinical Neurophysiology, 88, 51–63. doi: 10.1016/0168-5597(93)90028-N.PubMedCrossRefGoogle Scholar
  72. Knight, R. T. (1984). Decreased response to novel stimuli after prefrontal lesions in man. Electroencephalography and Clinical Neurophysiology, 59, 9–20. doi: 10.1016/0168-5597(84)90016-9.PubMedCrossRefGoogle Scholar
  73. Knight, R. T. (1997). Distributed cortical network for visual attention. Journal of Cognitive Neuroscience, 9, 75–91. doi: 10.1162/jocn.1997.9.1.75.CrossRefGoogle Scholar
  74. Kok, A., Ramautar, J. R., de Ruiter, M., B., Band, G. P., & Ridderinkhof, K. R. (2004). ERP components associated with successful and unsuccessful stopping in a stop-signal paradigm. Psychophysiology, 42, 9–20. doi: 10.1046/j.1469-8986.2003.00127.x.CrossRefGoogle Scholar
  75. Le Couteur, A., Lord, C., & Rutter, M. (2003). The autism diagnostic interview—revised (ADI-R). Los Angeles, CA: Western Psychological Services.Google Scholar
  76. Lincoln, A. J., Courchesne, E., Harms, L., & Allen, M. (1993). Contextual probability evaluation in autistic, receptive developmental disorder and control children: Event-related potential evidence. Journal of Autism and Developmental Disorders, 23, 37–58. doi: 10.1007/BF01066417.PubMedCrossRefGoogle Scholar
  77. Linden, M. (2007). QEEG guided neurofeedback based treatments for ADD, Aspergers, and autism. Presented at the 15th ISNR annual meeting, San Diego, CA, September 6–9.Google Scholar
  78. Luck, S. J., Heinze, H., Mangun, G. R., & Hillyard, S. A. (1990). Visual event-related potentials index focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 components. Electroencephalography and Clinical Neurophysiology, 75, 528–542. doi: 10.1016/0013-4694(90)90139-B.PubMedCrossRefGoogle Scholar
  79. Luu, P., Tucker, D. M. L., Englander, R., Lockfeld, A., Lutsep, H., & Oken, B. (2001). Localizing acute stroke-related EEC changes: Assessing the effects of spatial undersampling. Journal of Clinical Neurophysiology, 18, 302–317. doi: 10.1097/00004691-200107000-00002.PubMedCrossRefGoogle Scholar
  80. Mecklinger, A., Maess, B., Opitz, B., Pfeifer, E., Cheyne, D., & Weinberg, D. (1998). An MEG analysis of the P300 in visual discrimination tasks. Electroencephalography and Clinical Neurophysiology, 108, 45–66. doi: 10.1016/S0168-5597(97)00092-0.PubMedCrossRefGoogle Scholar
  81. Morgan, B., Mayberry, M., & Durkin, K. (2003). Weak central coherence, poor joint attention, and low verbal ability: Independent deficits in early autism. Developmental Psychology, 39(4), 646–656. doi: 10.1037/0012-1649.39.4.646.PubMedCrossRefGoogle Scholar
  82. Mottron, L., Burack, J., Iarocci, G., Belleville, S., & Enns, J. T. (2003). Locally oriented perception with intact global processing among adolescents with high-functioning autism: Evidence from multiple paradigms. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 44, 904–913. doi: 10.1111/1469-7610.00174.PubMedCrossRefGoogle Scholar
  83. Mountcastle, V. B. (1997). The columnar organization of the neocortex. Brain, 120, 701–722. doi: 10.1093/brain/120.4.701.PubMedCrossRefGoogle Scholar
  84. Mountcastle, V. B. (2003). Introduction: Computation in cortical columns. Cerebral Cortex (New York, N.Y.), 13, 2–4. doi: 10.1093/cercor/13.1.2.CrossRefGoogle Scholar
  85. Näätänen, R., Gaillard, A. W. K., & Mäntysalo, S. (1978). Early selective attention effect on evoked potential reinterpreted. Acta Psychologica, 2, 313–329. doi: 10.1016/0001-6918(78)90006-9.CrossRefGoogle Scholar
  86. Näätänen, R., & Michie, P. T. (1979). Early selective-attention effects on the evoked potential: A critical review and reinterpretation. Biological Psychology, 8, 81–136. doi: 10.1016/0301-0511(79)90053-X.PubMedCrossRefGoogle Scholar
  87. Näätänen, R., Schröger, E., Karakas, S., Tervaniemi, M., & Paavilainen, P. (1993). Development of a memory trace for a complex sound in the human brain. Neuroreport, 4, 503–506.PubMedCrossRefGoogle Scholar
  88. Net Station Acquisition. (2003). Technical manual. Eugene, OR: Electrical Geodesics, Inc.Google Scholar
  89. Oades, R. D., Walker, M. K., Geffen, L. B., & Stern, L. M. (1988). Event-related potentials in autistic and healthy children on an auditory choice reaction time task. International Journal of Psychophysiology, 6, 25–37. doi: 10.1016/0167-8760(88)90032-3.PubMedCrossRefGoogle Scholar
  90. Ozonoff, S. (1997). Casual mechanisms of autism: Unifying perspectives from an information-processing framework. In D. J. Cohen & F. R. Volkmar (Eds.), Handbook of autism and pervasive developmental disorders (pp. 868–879). New York: Wiley.Google Scholar
  91. Pellicano, E., Gibson, L., Maybery, M., Durkin, K., & Badcock, D. R. (2005). Abnormal global processing along the dorsal visual pathway in autism: A possible mechanism for weak visuospatial coherence? Neuropsychologia, 43, 1044–1053. doi: 10.1016/j.neuropsychologia.2004.10.003.PubMedCrossRefGoogle Scholar
  92. Perrin, E., Pernier, J., Bertrand, O., Giard, M., & Echallier, J. F. (1987). Mapping of scalp potentials by surface spline interpolation. Electroencephalography and Clinical Neurophysiology, 66, 75–81. doi: 10.1016/0013-4694(87)90141-6.PubMedCrossRefGoogle Scholar
  93. Picton, T. W. (1992). The P300 wave of the human event-related potential. Journal of Clinical Neurophysiology, 9, 456–479. doi: 10.1097/00004691-199210000-00002.PubMedCrossRefGoogle Scholar
  94. Pineda, J. (2007). An investigation on the efficacy of neurofeedback training in autism spectrum disorders. Presented at the 15th ISNR annual conference, San Diego, CA, September 6–9.Google Scholar
  95. Plaisted, K., Saksida, L., Alcántara, J., & Weisblatt, E. (2003). Towards an understanding of the mechanisms of weak central coherence effects: Experiments in visual configural learning and auditory perception. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358, 375–386. doi: 10.1098/rstb.2002.1211.PubMedCrossRefGoogle Scholar
  96. Polich, J. (2003). Theoretical overview of P3a a nd P3b. In J. Polich (Ed.), Detection of change: Event-related potential and fMRI findings (pp. 83–98). Boston: Kluwer Academic Press.Google Scholar
  97. Polich, J., & Herbst, K. L. (2000). P300 as a clinical assay. International Journal of Psychophysiology, 38, 3–19. doi: 10.1016/S0167-8760(00)00127-6.PubMedCrossRefGoogle Scholar
  98. Potts, G. F., Dien, J., Harty-Speiser, A., McDougl, L. M., & Tucker, D. M. (1998). Dense sensor array topography of the event-related potential to task-relevant auditory stimuli. Electroencephalography and Clinical Neurophysiology, 106, 444–456. doi: 10.1016/S0013-4694(97)00160-0.PubMedCrossRefGoogle Scholar
  99. Potts, G. F., Liotti, M., Tucker, D. M., & Posner, M. I. (1996). Frontal and inferior temporal cortical activity in visual target detection: Evidence from high spatially sampled event-related potentials. Brain Topography, 9, 3–14. doi: 10.1007/BF01191637.CrossRefGoogle Scholar
  100. Potts, G. F., Patel, S. H., & Azzam, P. N. (2004). Impact of instructed relevance on the visual ERP. International Journal of Psychophysiology, 52, 197–209. doi: 10.1016/j.ijpsycho.2003.10.005.PubMedCrossRefGoogle Scholar
  101. Pritchard, W. (1981). Psychophysiology of P300. Psychological Bulletin, 89, 506–540. doi: 10.1037/0033-2909.89.3.506.PubMedCrossRefGoogle Scholar
  102. Pritchard, W. S. (1986). Cognitive event-related potential correlates of schizophrenia. Psychological Bulletin, 100, 43–66. doi: 10.1037/0033-2909.100.1.43.PubMedCrossRefGoogle Scholar
  103. Pritchard, W. S., Raz, N., & August, G. (1987). Visual augmenting/reducing and P300 in autistic children. Journal of Autism and Developmental Disorders, 17, 231–242. doi: 10.1007/BF01495058.PubMedCrossRefGoogle Scholar
  104. Rippon, G., Brock, J., Brown, C., & Boucher, J. (2007). Disordered connectivity in the autistic brain: Challenges for the ‘new psychophysiology’. International Journal of Psychophysiology, 63, 164–172. doi: 10.1016/j.ijpsycho.2006.03.012.PubMedCrossRefGoogle Scholar
  105. Roberts, L. E., Rau, H., Lutzenberger, W., & Birbaumer, N. (1994). Mapping P300 waves onto inhibition: Go/Nogo discrimination. Electroencephalography and Clinical Neurophysiology, 92, 44–55. doi: 10.1016/0168-5597(94)90006-X.PubMedCrossRefGoogle Scholar
  106. Rogers, R. L., Basile, L. F. H., Papanicolaou, A. C., & Eisenberg, H. M. (1993). Magnetoencephalography reveals two distinct sources associated with late positive evoked potentials during visual oddball task. Cerebral Cortex (New York, N.Y.), 3, 163–169. doi: 10.1093/cercor/3.2.163.CrossRefGoogle Scholar
  107. Roid, G. H. (2003). Stanford-binet intelligence scales, fifth edition, technical manual. Itasca, IL: Riverside Publishing.Google Scholar
  108. Rubenstein, J. L., & Merzenich, M. M. (2003). Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes Brain & Behavior, 2, 255–267. doi: 10.1034/j.1601-183X.2003.00037.x.CrossRefGoogle Scholar
  109. Ruble, L., & Brown, S. (2003). Pervasive developmental disorders: Autism. In M. Wolraich (Ed.), Disorders of development and learning (pp. 249–266). London: BC Decker.Google Scholar
  110. Salisbury, D. F., Griggs, C. B., Shenton, M. E., & McCarly, R. W. (2004). The NoGo P300 ‘anteriorization’ effect and response inhibition. Clinical Neurophysiology, 115, 1550–1558. doi: 10.1016/j.clinph.2004.01.028.PubMedCrossRefGoogle Scholar
  111. Schmitz, N., Rubia, K., Dly, E., Smith, A., Williams, S., & Murphy, D. G. M. (2006). Neural correlates of executive function in autistic spectrum disorders. Biological Psychiatry, 59, 7–16. doi: 10.1016/j.biopsych.2005.06.007.PubMedCrossRefGoogle Scholar
  112. Scolnik, B. (2005). Effects of electroencephalogram biofeedback with asperger’s syndrome. International Journal of Rehabilitation Research. Internationale Zeitschrift fur Rehabilitationsforschung. Revue Internationale de Recherches de Readaptation, 28(2), 159–163. doi: 10.1097/00004356-200506000-00010.Google Scholar
  113. Seri, S., Cerquiglini, A., Pisani, F., & Curatolo, P. (1999). Autism in tuberous sclerosis: Evoked potential evidence for a deficit in auditory sensory processing. Clinical Neurophysiology, 110, 1825–1830. doi: 10.1016/S1388-2457(99)00137-6.PubMedCrossRefGoogle Scholar
  114. Sichel, A. G., Fehmi, L. G., & Goldstein, D. M. (1995). Positive outcome with neurofeedback treatment in a case of mild autism. Journal of Neurotherapy, 1, 60–64. doi: 10.1300/J184v01n01_08.CrossRefGoogle Scholar
  115. Srinivasan, R., Tucker, D. M., & Murias, M. (1998). Estimating the spatial Nyquist of the human EEC. Behavior Research Methods, Instruments, & Computers, 30, 8–19.Google Scholar
  116. Strik, W. K., Fallgatter, A. J., Brandies, D., & Pascual-Marqui, R. D. (1998). Three-dimensional tomography of event-related potentials during response inhibition: Evidence for phasic frontal lobe activation. Electroencephalography and Clinical Neurophysiology, 108, 406–413. doi: 10.1016/S0168-5597(98)00021-5.PubMedCrossRefGoogle Scholar
  117. Tallon-Baudry, C. (2003). Oscillatory synchrony and human visual cognition. Journal of Physiology, 97, 355–363. doi: 10.1016/j.jphysparis.2003.09.009.PubMedGoogle Scholar
  118. Tallon-Baudry, C., Bertrand, O., Henaff, M.-A., Isnard, J., & Fischer, C. (2005). Attention modulates gamma-band oscillations differently in the human lateral occipital cortex and fusiform gyrus. Cerebral Cortex (New York, N.Y.), 15, 654–662. doi: 10.1093/cercor/bhh167.CrossRefGoogle Scholar
  119. Townsend, J., Courchesne, E., Covington, J., Westerfield, M., Harris, N. S., Lyden, P., et al. (1999). Spatial attention deficits in patients with acquired or developmental cerebellar abnormality. The Journal of Neuroscience, 19, 5632–5643.PubMedGoogle Scholar
  120. Townsend, J., Courchesne, E., & Egaas, B. (1996). Slowed orienting of covert visual-spatial attention in autism: Specific deficits associated with cerebellar and parietal abnormality. Development and Psychopathology, 8, 503–584.CrossRefGoogle Scholar
  121. Townsend, J., Westerfield, M., Leaver, E., Makeig, S., Jung, T., Pierce, K., et al. (2001). Event-related brain response abnormalities in autism: Evidence for impaired cerebello-frontal spatial attention networks. Cognitive Brain Research, 11, 127–145. doi: 10.1016/S0926-6410(00)00072-0.PubMedCrossRefGoogle Scholar
  122. Varela, F., Lachaux, J., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Neuroscience, 2, 229–239. doi: 10.1038/35067550.PubMedGoogle Scholar
  123. Verbaten, M. N., Roelofs, J. W., van Engeland, H., Kenemans, J. K., & Slangen, J. L. (1991). Abnormal visual event-related potentials of autistic children. Journal of Autism and Developmental Disorders, 21, 449–470. doi: 10.1007/BF02206870.PubMedCrossRefGoogle Scholar
  124. Villalobos, M. E., Mizuno, A., Dahl, B. C., Kemmotsu, N., & Muller, R.-A. (2005). Reduced functional connectivity between V1 and inferior frontal cortex associated with visuomotor performance in autism. NeuroImage, 25, 916–925. doi: 10.1016/j.neuroimage.2004.12.022.PubMedCrossRefGoogle Scholar
  125. Volkmar, F. R., & Pauls, D. (2003). Autism. Lancet, 362, 1133–1141. doi: 10.1016/S0140-6736(03)14471-6.PubMedCrossRefGoogle Scholar
  126. Wechsler, D. (2003). Wechsler intelligence scale for children (4th ed.). San Antonio, TX: Harcourt Assessment, Inc.Google Scholar
  127. Wechsler, D. (2004). Wechsler abbreviated scale for intelligence. San Antonio, TX: Harcourt Assessment, Inc.Google Scholar
  128. Welchew, D. E., Ashwin, C., Berkouk, K., Salvador, R., Suckling, J., Baron-Cohen, S., et al. (2005). Functional disconnectivity of the medial temporal lobe in Asperger’s syndrome. Biological Psychiatry, 57, 991–998. doi: 10.1016/j.biopsych.2005.01.028.PubMedCrossRefGoogle Scholar
  129. West, R. (2003). Neural correlates of cognitive control and conflict detection in the Stroop and digit-location tasks. Neuropsychologia, 41, 1122–1135. doi: 10.1016/S0028-3932(02)00297-X.PubMedCrossRefGoogle Scholar
  130. West, R., Bowry, R., & McConville, C. (2004). Sensitivity of medial frontal cortex to response and nonresponse conflict. Psychophysiology, 41, 739–748. doi: 10.1111/j.1469-8986.2004.00205.x.PubMedCrossRefGoogle Scholar
  131. Yamazaki, T., Kamijo, K., Kenmochi, A., Fukuzumi, S., Kiyuna, T., & Kuroiwa, Y. (2000). Multiple equivalent current dipole source localization of visual event-related potentials during oddball paradigm with motor response. Brain Topography, 12, 159–175. doi: 10.1023/A:1023467806268.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Estate Sokhadze
    • 1
    Email author
  • Joshua Baruth
    • 1
    • 3
  • Allan Tasman
    • 1
  • Lonnie Sears
    • 2
  • Grace Mathai
    • 2
  • Ayman El-Baz
    • 1
  • Manuel F. Casanova
    • 1
    • 3
  1. 1.Department of Psychiatry and Behavioral ScienceUniversity of Louisville School of MedicineLouisvilleUSA
  2. 2.Department of PediatricsUniversity of Louisville School of MedicineLouisvilleUSA
  3. 3.Department of Anatomical Sciences and NeurobiologyUniversity of Louisville School of MedicineLouisvilleUSA

Personalised recommendations