Rhythmic Oscillations in Quantitative EEG Measured During a Continuous Performance Task

  • James E. ArrudaEmail author
  • Hongmei Zhang
  • R. Toby Amoss
  • Kerry L. Coburn
  • William R. Aue


The objective of the present investigation was to determine if cyclic variations in human performance recorded during a 30 min continuous performance task would parallel cyclic variations in right-hemisphere beta-wave activity. A fast fourier transformation was performed on the quantitative electroencephalogram (qEEG) and the performance record of each participant (N = 62), producing an individual periodogram for each outcome measure. An average periodogram was then produced for both qEEG and performance by combining (averaging) the amplitudes associated with each periodicity in the 62 original periodograms. Periodicities ranging from 1.00 to 2.00 min and from 4.70 to 5.70 min with amplitudes greater than would be expected due to chance were retained (Smith et al. 2003). The results of the present investigation validate the existence of cyclic variations in human performance that have been identified previously (Smith et al. 2003) and extend those findings by implicating right-hemisphere mediated arousal in the process (Arruda et al. 1996, 1999, 2007). Significant cyclic variations in left-hemisphere beta-wave activity were not observed. Taken together, the findings of the present investigation support a model of sustained attention that predicts cyclic changes in human performance that are the result of cyclic changes in right-hemisphere arousal.


EEG Attention Vigilance Cyclic Periodicity CPT PCA FA Performance Right hemisphere 


  1. Arruda, J. E., Weiler, M. D., Valentino, D. A., Willis, G., Rossi, J., Stern, R. A., et al. (1996). A guide for applying principal-component analysis and confirmatory factor analysis to quantitative electroencephalogram data. International Journal of Psychophysiology, 23, 63–81.PubMedCrossRefGoogle Scholar
  2. Arruda, J. E., Walker, K. A., Weiler, M. D., & Valentino, D. A. (1999). Validation of a right hemisphere vigilance system as measured by principal component and factor analyzed quantitative electroencephalogram. International Journal of Psychophysiology, 32, 119–128.PubMedCrossRefGoogle Scholar
  3. Arruda, J. E., Amoss, R. T., Coburn, K. L., & McGee, H. (2007). A quantitative electroencephalographic correlate of sustained attention processing. Applied Psychophysiology and Biofeedback, 32, 11–17.PubMedCrossRefGoogle Scholar
  4. Aston-Jones, G. (1985). The locus coeruleus: Behavioral functions of locus coeruleus derived from cellular attributes. Physiological Psychology, 13, 118–126.Google Scholar
  5. Aston-Jones, G., Chiang, C., & Alexinsky, T. (1991). Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance. Progress in Brain Research, 88, 501–520.PubMedCrossRefGoogle Scholar
  6. Aston-Jones, G., Rajkowski, J., Kubiak, P., & Alexinsky, T. (1994). Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. The Journal of Neuroscience, 14, 4467–4480.PubMedGoogle Scholar
  7. Berridge, C. W., Arnsten, A. F. T., & Foote, S. L. (1993). Noradrenergic modulation of cognitive function: Clinical implications of anatomical, electrophysiological and behavioral studies in animal models. Psychological Medicine, 23, 557–564.PubMedCrossRefGoogle Scholar
  8. Brigham, E. O. (1974). The fast fourier transform. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  9. Coburn, K. L., Lauterbach, E. L., Boutros, N. N., Black, K., Arciniegas, D. B., & Coffey, C. E. (2006). The value of quantitative electroencephalography in clinical psychiatry. Journal of Neuropsychiatry and Clinical Neurosciences, 18, 460–500.PubMedGoogle Scholar
  10. Conte, S., Ferlazzo, F., & Renzi, P. (1995). Ultradian rhythms of reaction times in performance in vigilance tasks. Biological Psychology, 39, 159–172.PubMedCrossRefGoogle Scholar
  11. Coull, J. T., Frackowiak, R. S. J., & Frith, C. D. (1998). Monitoring for target objects: Activation of right frontal and parietal cortices with increasing time on task. Neuropsychologia, 36, 1325–1334.PubMedCrossRefGoogle Scholar
  12. El-Sayed, E., Larsson, J., Persson, H. E., & Rydelius, P. (2002). Altered cortical activity in children with attention-deficit/hyperactivity disorder during attentional load task. Journal of the American Academy of Child and Adolescent Psychiatry, 41, 811–819.PubMedCrossRefGoogle Scholar
  13. Feldman, H. H., & Jacova, C. (2005). Mild cognitive impairment. The American Journal of Geriatric Psychiatry, 13, 645–655.PubMedGoogle Scholar
  14. Foote, S. L., Bloom, F. E., & Aston-Jones, G. (1983). Nucleus locus coeruleus: New evidence of anatomical and physiological specificity. Physiological Reviews, 63, 844–914.PubMedGoogle Scholar
  15. Gilden, D. L., & Wilson, S. G. (1995). Streaks in skilled performance. Psychonomic Bulletin & Review, 2, 260–265.Google Scholar
  16. Hitchcock, E. D., Warm, J. S., Matthews, G., Dember, W. N., Shear, P. K., Tripp, L. D., et al. (2003). Automation cueing modulates cerebral blood flow and vigilance in a simulated traffic control task. Theoretical Issues in Ergonomics Science, 4, 89–112.CrossRefGoogle Scholar
  17. Jung, T.-P., Makeig, S., Stensmo, M., & Sejnowski, T. J. (1997). Estimating alertness from the EEG power spectrum. IEEE Transactions on Biomedical Engineering, 44, 60–69.PubMedCrossRefGoogle Scholar
  18. Lewin, J. S., Fiedman, L., Wu, D., Miller, D. A., Thompson, L. A., Klein, S. K., et al. (1996). Cortical localization of human sustained attention: Detection with functional MR using a visual vigilance paradigm. Journal of Computer Assisted Tomography, 20, 695–701.PubMedCrossRefGoogle Scholar
  19. Lovett Doust, W. D., Payne, W. D., & Podnieks, I. (1978). An ultradian rhythm of reaction time measurements in man. Neuropsychobiology, 4, 93–98.PubMedCrossRefGoogle Scholar
  20. Makeig, S., & Inlow, M. (1993). Lapses in alertness: Coherence of fluctuations in performance and EEG spectrum. Electroencephalography and Clinical Neurophysiology, 86, 23–35.PubMedCrossRefGoogle Scholar
  21. Makeig, S., & Jung, T.-P. (1995). Changes in alertness are a principal component of variance in the EEG spectrum. NeuroReport, 7, 213–216.PubMedGoogle Scholar
  22. Makeig, S., & Jung, T.-P. (1996). Tonic, phasic, and transient EEG correlates of auditory awareness in drowsiness. Cognitive Brain Research, 4, 15–25.PubMedCrossRefGoogle Scholar
  23. Makeig, S., Jung, T.-P., & Sejnowski, T. J. (2000). Awareness during drowsiness: Dynamics and electrophysiological correlates. Canadian Journal of Experimental Psychology, 54, 266–273.PubMedGoogle Scholar
  24. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113.PubMedCrossRefGoogle Scholar
  25. Pardo, J. V., Fox, P. T., & Raichle, M. E. (1991). Localization of a human system for sustained attention by positron emission tomography. Nature, 349, 61–63.PubMedCrossRefGoogle Scholar
  26. Pattyn, N., Neyt, X., Henderickx, D., & Soetens, E. (2008). Psychophysiological investigation of vigilance decrement: Bordom or cognitive fatigue? Physiology & Behavior, 93, 369–378.CrossRefGoogle Scholar
  27. Paus, T., Zatorre, R. J., Hofle, N., Caramanos, Z., Gotman, J., Petrides, M., et al. (1997). Time-related changes in neural systems underlying attention and arousal during the performance of an auditory vigilance task. Journal of Cognitive Neuroscience, 9, 392–408.CrossRefGoogle Scholar
  28. Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42.PubMedCrossRefGoogle Scholar
  29. Rains, G. D. (2002). Methods in neuropsychology. In G. D. Rains (Ed.), Principles of human neuropsychology (pp. 72–92). Boston: McGraw Hill.Google Scholar
  30. Rajkowski, J., Kubiak, P., & Aston-Jones, G. (1994). Locus coeruleus activity in monkey: Phasic and tonic changes are associated with altered vigilance. Brain Research Bulletin, 35, 607–616.PubMedCrossRefGoogle Scholar
  31. Rezai, K., Andreasen, N. C., Alliger, R., Cohen, G., Swayze, V., & O’Leary, D. S. (1993). The Neuropsychology of the prefrontal cortex. Archives of Neurology, 50, 636–642.PubMedGoogle Scholar
  32. Sara, S. J., Dyon-Laurent, C., & Hervé, A. (1995). Novelty seeking behavior in the rat is dependent upon the integrity of the noradrenergic system. Cognitive Brain Research, 2, 181–187.PubMedCrossRefGoogle Scholar
  33. Semlitsch, H. V., Anderer, P., Schuster, P., & Presslich, O. (1986). A solution for reliable and valid reduction of ocular artifacts, applied to the P300 ERP. Psychophysiology, 23, 695–703.PubMedCrossRefGoogle Scholar
  34. Smith, K. J., Valentino, D. A., & Arruda, J. E. (2002). Measures of variation in performance during a sustained attention task. Journal of Clinical and Experimental Neuropsychology, 24, 828–839.PubMedCrossRefGoogle Scholar
  35. Smith, K. J., Valentino, D. A., & Arruda, J. E. (2003). Rhythmic oscillations in the performance of a sustained attention task. Journal of Clinical and Experimental Neuropsychology, 25, 561–570.PubMedCrossRefGoogle Scholar
  36. Sturm, W., de Simone, A., Krause, B. J., Specht, K., Hesselmann, V., Radermacher, I., et al. (1999). Functional anatomy of intrinsic alertness: Evidence for a fronto-parietal-thalamic-brainstem network in the right hemisphere. Neuropsychologia, 37, 797–805.PubMedCrossRefGoogle Scholar
  37. Sturm, W., Longoni, F., Fimm, B., Dietrich, T., Weis, S., Kemna, S., et al. (2004). Network for auditory intrinsic alertness: A PET study. Neuropsychologia, 42, 563–568.PubMedCrossRefGoogle Scholar
  38. Swick, D., Pineda, J. A., Schacher, S., & Foote, S. L. (1994). Locus coeruleus neuronal activity in awake monkeys: Relationship to auditory P300-like potentials and spontaneous EEG. Experimental Brain Research, 101, 86–92.CrossRefGoogle Scholar
  39. Tucker, D. M., & Williamson, P. A. (1984). Asymmetric neural control systems in human self-regulation. Psychological Review, 91, 185–215.PubMedCrossRefGoogle Scholar
  40. Valentino, D. A., Arruda, J. A., & Gold, S. A. (1993). Comparison of QEEG and response accuracy in good vs poorer performers during a vigilance task. International Journal of Psychophysiology, 15, 123–133.PubMedCrossRefGoogle Scholar
  41. Wallace, J. C., Vodanovich, S. J., & Restino, R. (2003). Predicting cognitive failures from boredom proneness and daytime sleepiness scores: An investigation within military and undergraduate samples. Personality and Individual Differences, 34, 635–644.CrossRefGoogle Scholar
  42. Warm, J. S., & Jerison, H. J. (1984). The psychophysics of vigilance. In J. S. Warm (Ed.), Sustained attention in human performance (pp. 15–59). London: Wiley.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • James E. Arruda
    • 1
    Email author
  • Hongmei Zhang
    • 2
  • R. Toby Amoss
    • 3
  • Kerry L. Coburn
    • 4
  • William R. Aue
    • 5
  1. 1.Department of PsychologyUniversity of West FloridaPensacolaUSA
  2. 2.University of South CarolinaColumbiaUSA
  3. 3.Georgia State UniversityAtlantaUSA
  4. 4.Mercer UniversityMaconUSA
  5. 5.University of West FloridaPensacolaUSA

Personalised recommendations