Self-perception and Experiential Schemata in the Addicted Brain

  • Rex CannonEmail author
  • Joel Lubar
  • Debora Baldwin


This study investigated neurophysiological differences between recovering substance abusers (RSA) and controls while electroencephalogram (EEG) was continuously recorded during completion of a new assessment instrument. The participants consisted of 56 total subjects; 28 RSA and 28 non-clinical controls (C). The participants completed the self-perception and experiential schemata assessment (SPESA) and source localization was compared utilizing standardized low-resolution electromagnetic tomography (sLORETA). The data show significant differences between groups during both the assessment condition and baselines. A pattern of alpha activity as estimated by sLORETA was shown in the right amygdala, uncus, hippocampus, BA37, insular cortex and orbitofrontal regions during the SPESA condition. This activity possibly reflects a circuit related to negative perceptions of self formed in specific neural pathways. These pathways may be responsive to the alpha activity induced by many substances by bringing the brain into synchrony if only for a short time. In effect this may represent the euphoria described by substance abusers.


Addiction Self-perception Neurophysiological assessment EEG biofeedback LORETA 



The authors express sincere gratitude to the subjects of this study for their effort and contribution to science. We would like to thank NovatechEEG for the use of their software; Deymed Diagnostics for the use of their Truscan Acquisition System and Dr. Robert Thatcher for his contribution of Neuroguide to our lab for research purposes. We also thank Dr. Greg Reynolds for his editorial assistance and thorough review of the manuscript.


  1. Abrahams, S., Goldstein, L. H., Simmons, A., Brammer, M. J., Williams, S. C., Giampietro, V. P., et al. (2003). Functional magnetic resonance imaging of verbal fluency and confrontation naming using compressed image acquisition to permit overt responses. Human Brain Mapping, 20(1), 29–40. doi: 10.1002/hbm.10126.PubMedGoogle Scholar
  2. Adinoff, B. (2004). Neurobiologic processes in drug reward and addiction. Harvard Review of Psychiatry, 12(6), 305–320. doi: 10.1080/10673220490910844.PubMedGoogle Scholar
  3. Adinoff, B., Williams, M., Best, S., Harris, T., Chandler, P., & Devous, M. (2006). Sex differences in medial and lateral orbitofrontal cortex hypoperfusion in cocaine-dependent men and women. Gender Medicine: Official Journal of the Partnership for Gender-Specific Medicine at Columbia University, 3(3), 206–222. doi: 10.1016/S1550-8579(06)80209-3.Google Scholar
  4. Ahmed, S. H., Lutjens, R., van der Stap, L. D., Lekic, D., Romano-Spica, V., Morales, M., et al. (2005). Gene expression evidence for remodeling of lateral hypothalamic circuitry in cocaine addiction. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11533–11538. doi: 10.1073/pnas.0504438102.PubMedGoogle Scholar
  5. Alterman, A., Cacciola, J., Habing, B., & Lynch, K. (2007). Addiction severity index recent and lifetime summary indexes based om nonparametric item response theory models. Psychological Assessment, 19(1), 119–132. doi: 10.1037/1040-3590.19.1.119.PubMedGoogle Scholar
  6. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed.). [DSM-IV-TR], Text revision. Washington, DC: Author.Google Scholar
  7. Anderton, B. (2002). Ageing of the brain. Mechanisms of Ageing and Development, 123, 811–817. doi: 10.1016/S0047-6374(01)00426-2.PubMedGoogle Scholar
  8. Andrzejewski, M. E., Spencer, R., & Kelley, A. (2005). Instrumental learning, but not performance, requires dopamine D1-receptor activation in the amygdala. Neuroscience, 135(2), 335–345. doi: 10.1016/j.neuroscience.2005.06.038.PubMedGoogle Scholar
  9. Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191–215. doi: 10.1037/0033-295X.84.2.191.PubMedGoogle Scholar
  10. Bechara, A., & Damasio, H. (2002). Decision-making and addiction (part I): Impaired activation of somatic states in substance dependent individuals when pondering decisions with negative future consequences. Neuropsychologia, 40(10), 1675–1689. doi: 10.1016/S0028-3932(02)00015-5.PubMedGoogle Scholar
  11. Bjork, J. M., Momenan, R., Smith, A. R., & Hommer, D. W. (2008). Reduced posterior mesofrontal cortex activation by risky rewards in substance-dependent males. Drug and Alcohol Dependence, 95, 115–128. doi: 10.1016/j.drugalcdep.2007.12.014.PubMedGoogle Scholar
  12. Bjork, J. M., Smith, A. R., Danube, C. L., & Hommer, D. W. (2007). Developmental differences in posterior mesofrontal cortex recruitment by risky rewards. The Journal of Neuroscience, 27(18), 4839–4849. doi: 10.1523/JNEUROSCI.5469-06.2007.PubMedGoogle Scholar
  13. Blair, R. C., & Karniski, W. (1994). Distribution-free statistical analyses of surface and volumetric maps. In R. W. Thatcher, M. Hallett, E. R. John & M. Huerta (Eds.), Functional neuroimaging: Technical foundations (pp. 114–118). San Diego, CA: Academic.Google Scholar
  14. Blom, J. L., & Anneveldt, M. (1982). An electrode cap tested. Electroencephalography and Clinical Neurophysiology, 54, 591–594. doi: 10.1016/0013-4694(82)90046-3.PubMedGoogle Scholar
  15. Blum, K., Chen, T., Meshkin, B., Waite, R., Downs, B., Blum, S. H., et al. (2007). Manipulation of catechol-O-methyl-transferase (COMT) activity to influence the attenuation of substance seeking behavior, a subtype of reward deficiency syndrome (RDS), is dependent upon gene polymorphisms: A hypothesis. Medical Hypotheses, 69, 1054–1060. doi: 10.1016/j.mehy.2006.12.062.PubMedGoogle Scholar
  16. Brennan, P. L., & Moos, R. H. (1990). Life stressors, social resources and late-life problem drinking. Psychology and Aging, 5(4), 491–501. doi: 10.1037/0882-7974.5.4.491.PubMedGoogle Scholar
  17. Brett, J. F., Brief, A. P., Burke, M. J., George, J. M., & Webster, J. (1990). Negative affectivity and the reporting of stressful life events. Health Psychology, 9(1), 57–69. doi: 10.1037/0278-6133.9.1.57.PubMedGoogle Scholar
  18. Brook, J. S., Whiteman, M., Gordon, A. S., & Cohen, P. (1989). Changes in drug involvement: A longitudinal study of childhood and adolescent determinants. Psychological Reports, 65(3 Pt 1), 707–726.PubMedGoogle Scholar
  19. Bryer, J., Martines, K., & Dignan, M. (1990). Millon clinical multiaxial inventory alcohol and drug abuse scales and the identification of substance-abuse patients. Psychological Assessment: A Journal of Counseling and Clinical Psychology, 2(4), 438–441.Google Scholar
  20. Buckner, J. D., Schmidt, N. B., Lang, A. R., Small, J. W., Schlauch, R. C., & Lewinsohn, P. M. (2008). Specificity of social anxiety disorder as a risk factor for alcohol and cannabis dependence. Journal of Psychiatric Research, 42(3), 230–239. doi: 10.1016/j.jpsychires.2007.01.002.PubMedGoogle Scholar
  21. Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4, 215–222. Review. doi: 10.1016/S1364-6613(00)01483-2.
  22. Cabeza, R., Dolcos, F., Prince, S., Rice, H., Weissman, D., & Nyberg, L. (2003). Attention-related activity during episodic memory retrieval: A cross-function fMRI study. Neuropsychologia, 41, 390–399. doi: 10.1016/S0028-3932(02)00170-7.PubMedGoogle Scholar
  23. Cabeza, R., & Nyberg, L. (2000). Imaging cognition II. Journal of Cognitive Neuroscience, 12(1), 1–47. doi: 10.1162/08989290051137585.PubMedGoogle Scholar
  24. Cabeza, R., Prince, S., Daselaar, S., Greenberg, D., Budde, M., Dolcos, F., et al. (2004). Brain activity during episodic retrieval of autobiographical and laboratory events: An fMRI study using a novel photo paradigm. Journal of Cognitive Neuroscience, 16(9), 1583–1594. doi: 10.1162/0898929042568578.PubMedGoogle Scholar
  25. Canetti, L., Bachar, E., Galili-Weisstub, E., De Nour, A., & Shalev, A. (1997). Parental bonding and mental health in adolescence. Adolescence, 32(126), 381–394.PubMedGoogle Scholar
  26. Cannon, D., Bell, W., Fowler, R., Penk, W., & Finkelstein, A. (1990). MMPI differences between alcoholics and drug abusers: Effect of age and race. Psychological Assessment: A Journal of Counseling and Clinical Psychology, 2(1), 51–55.Google Scholar
  27. Cannon, R., Congedo, M., & Lubar. J. (in press-a). Differentiating at network of executive attention: LORETA neurofeedback in anterior cingulate and dorsolateral prefrontal cortices: Mapping a network of executive attention. The International Journal of Neuroscience. Google Scholar
  28. Cannon, R., Lubar, J., Clements, J. G., Harvey, E., & Baldwin, D. (2008). Practical joking and cingulate cortex: A standardized low resolution electromagnetic tomography (sLORETA) investigation of practical joking in the cerebral volume. Journal of Neurotherapy, 11(4), 51–63.CrossRefGoogle Scholar
  29. Cannon, R., Lubar, J., Congedo, M., Thornton, K., Hutchens, T., & Towler, K. (2007). The effects of neurofeedback in the cognitive division of the anterior cingulate gyrus. The International Journal of Neuroscience, 117(3), 337–357. doi: 10.1080/00207450500514003.PubMedGoogle Scholar
  30. Cannon, R., Lubar, J., Gerke, A., Thornton, K., Hutchens, T., & McCammon, V. (2006). Topographical coherence and absolute power changes resulting from LORETA neurofeedback in the anterior cingulate gyrus. Journal of Neurotherapy, 10(1), 5–31. doi: 10.1300/J184v10n01_02.Google Scholar
  31. Cannon, R., Lubar, J., Sokhadze, E., & Baldwin, D. (in press-b). LORETA neurofeedback for addiction and the possible neurophysiology of psychological processes influenced: A case study and region of interest (ROI) analysis of LNFB in right anterior cingulate cortex (ACC). Journal of Neurotherapy. Google Scholar
  32. Cannon, R., Lubar, J., Thornton, K., Wilson, S., & Congedo, M. (2004). Limbic beta activation and LORETA: Can hippocampal and related limbic activity be recorded and changes visualized in an affective memory condition? Journal of Neurotherapy, 8(4), 5–24. doi: 10.1300/J184v08n04_02.Google Scholar
  33. Cardinal, R. N., Winstanley, C. A., Robbins, T. W., & Everitt, B. J. (2004). Limbic corticostriatal systems and delayed reinforcement. Annals of the New York Academy of Sciences, 1021, 33–50. doi: 10.1196/annals.1308.004.PubMedGoogle Scholar
  34. Cardoner, N., Soriano-Mas, C., Pujol, J., Alonso, P., Harrison, B., et al. (2007). Brain structural correlates of depressive comorbidity in obsessive-compulsive disorder. NeuroImage, 38(3), 413–421. doi: 10.1016/j.neuroimage.2007.07.039.PubMedGoogle Scholar
  35. Carelli, R. M., Williams, J., & Hollander, J. (2003). Basolateral amygdala neurons encode cocaine self-administration and cocaine-associated cues. The Journal of Neuroscience, 23(23), 8204–8211.PubMedGoogle Scholar
  36. Casanova, M. F., Switala, A., & Trippe, J. (2007). A comparison study of the vertical bias of pyramidal cells in the hippocampus and neocortex. Developmental Neuroscience, 29(1–2), 193–200. doi: 10.1159/000096223.PubMedGoogle Scholar
  37. Chambers, R. A., Krystal, J. H., & Self, D. W. (2001). A neurobiological basis for substance abuse comorbidity in schizophrenia. Biological Psychiatry, 50(2), 71–83. doi: 10.1016/S0006-3223(01)01134-9.PubMedGoogle Scholar
  38. Chen, W., Tenney, J., Kulkarni, P., & King, J. (2007). Imaging unconditioned fear response with manganese-enhanced MRI (MEMRI). NeuroImage, 37(1), 221–229. doi: 10.1016/j.neuroimage.2007.05.001.PubMedGoogle Scholar
  39. Childress, A. R., Mozley, P. D., McElgin, W., Fitzgerald, J., Reivich, M., & O’Brien, C. P. (1999). Limbic activation during cue-induced cocaine craving. The American Journal of Psychiatry, 156(1), 11–18.PubMedGoogle Scholar
  40. Cohen, H., Porjesz, B., & Begleiter, H. (1993). The effects of ethanol on EEG activity in males at risk for alcoholism. Electroencephalography and Clinical Neurophysiology, 86, 368–376. doi: 10.1016/0013-4694(93)90132-F.PubMedGoogle Scholar
  41. Congedo, M. (2003). Tomographic neurofeedback: A new technique for the self-regulation of brain electrical activity. An unpublished dissertation, University of Tennessee, Knoxville.Google Scholar
  42. Congedo, M. (2006). Subspace projection filters for real-time brain electromagnetic imaging. IEEE Transactions on Bio-Medical Engineering, 53(8), 1624–1634. doi: 10.1109/TBME.2006.878055.PubMedGoogle Scholar
  43. Congedo, M., Lubar, J., & Joffe, D. (2004). Low-resolution electromagnetic tomography neurofeedback. IEEE Transactions on Neuronal Systems and Rehabilitation Engineering, 12(4), 387–397. doi: 10.1109/TNSRE.2004.840492.Google Scholar
  44. Cooke, B., Jordan, C., & Breedlove, S. (2007). Pubertal growth of the medial amygdala delayed by short photoperiods in the Siberian hamster, Phodopus sungorus. Hormones and Behavior, 52(3), 283–288. doi: 10.1016/j.yhbeh.2007.04.008.PubMedGoogle Scholar
  45. Corya, S. A., Williamson, D., Sanger, T., Briggs, S., Case, M., & Tollefson, G. (2006). A randomized, double-blind comparison of olanzapine/fluoxetine combination, olanzapine, fluoxetine, and venlafaxine in treatment-resistant depression. Depression and Anxiety, 23(6), 364–372. doi: 10.1002/da.20130.PubMedGoogle Scholar
  46. Cronbach, L., & Meehl, P. (1955). Construct validity in psychological tests. Psychological Bulletin, 56, 81–105.Google Scholar
  47. Damasio, A. (1994). Descartes error: Emotion, reason and the human brain (pp. 127–169). New York: Avon Books Inc.Google Scholar
  48. Dardou, D., Datiche, F., & Catterelli, M. (2007). Does taste or odor activate the same brain networks after retrieval of taste potentiated odor aversion? Neurobiology of Learning and Memory, 88(2), 186–197. doi: 10.1016/j.nlm.2007.04.002.PubMedGoogle Scholar
  49. Davidson, R., Jackson, D., & Kalin, N. (2000). Emotion, plasticity, context, and regulation: Perspectives from affective neuroscience. Psychological Bulletin, 126, 890–909. doi: 10.1037/0033-2909.126.6.890.PubMedGoogle Scholar
  50. Dayas, C., Liu, X., Simms, J., & Weiss, F. (2007). Distinct patterns of neural activation associated with ethanol seeking: Effects of naltrexone. Biological Psychiatry, 61(8), 979–989. doi: 10.1016/j.biopsych.2006.07.034.PubMedGoogle Scholar
  51. De Bellis, M. D., Clark, D. B., Beers, S. R., Soloff, P. H., Boring, A. M., Hall, J., et al. (2000). Hippocampal volume in adolescent-onset alcohol use disorders. The American Journal of Psychiatry, 157(5), 737–744. doi: 10.1176/appi.ajp.157.5.737.PubMedGoogle Scholar
  52. De Bruin, E. A., Bijl, S., Stam, C. J., Böcker, B. E., Kenemans, J., & Verbaten, M. N. (2004). Abnormal EEG synchronisation in heavily drinking students. Clinical Neurophysiology, 115, 2048–2055. doi: 10.1016/j.clinph.2004.04.010.PubMedGoogle Scholar
  53. De Bruin, E. A., Stam, C. J., Bijl, S., Verbaten, M. N., & Kenemans, J. L. (2006). Moderate-to-heavy alcohol intake is associated with differences in synchronization of brain activity during rest and mental rehearsal. International Journal of Psychophysiology, 60(3), 304–314. doi: 10.1016/j.ijpsycho.2005.07.007.PubMedGoogle Scholar
  54. del Olmo, N., Miguens, M., Higuera-Matas, A., Torres, I., Garcia-Lecumberri, C., Solis, J. M., et al. (2006). Enhancement of hippocampal long-term potentiation induced by cocaine self-administration is maintained during the extinction of this behavior. Brain Research, 1116(1), 120–126. doi: 10.1016/j.brainres.2006.07.001.PubMedGoogle Scholar
  55. Deppe, M., Schwindt, W., Kugel, H., Plassmann, H., & Kenning, P. (2005). Nonlinear responses within the medial prefrontal cortex reveal when specific implicit information influences economic decision making. Journal of Neuroimaging, 15(2), 171–182. doi: 10.1177/1051228405275074.PubMedGoogle Scholar
  56. de Ruiter, M., Veltman, D., Phaf, R., & van Dycj, R. (2007). Negative words enhance recognition in nonclinical high dissociators: An fMRI study. NeuroImage, 37(1), 323–334. doi: 10.1016/j.neuroimage.2007.04.064.PubMedGoogle Scholar
  57. Deutschlander, A., Bense, S., Stephan, T., Schwaiger, M., Brandt, T., & Dietrich, M. (2002). Sensory system interactions during simultaneous vestibular and visual stimulation in PET. Human Brain Mapping, 16(2), 92–103. doi: 10.1002/hbm.10030.PubMedGoogle Scholar
  58. Devinsky, O., Morrell, M., & Vogt, B. (1995). Review article: Contributions of anterior cingulate cortex to behaviour. Brain, 118, 279–306. doi: 10.1093/brain/118.1.279.PubMedGoogle Scholar
  59. De Witte, P. (2004). Imbalance between neuroexcitatory and neuroinhibitory amino acids causes craving for ethanol. Addictive Behaviors, 29(7), 1325–1339. doi: 10.1016/j.addbeh.2004.06.020.PubMedGoogle Scholar
  60. Di Chiara, G., Tanda, G., Bassareo, V., Pontieri, F., Acquas, E., Fenu, S., et al. (1999). Drug addiction as a disorder of associative learning. Role of nucleus accumbens shell/extended amygdala dopamine. Annals of the New York Academy of Sciences, 877, 461–485. doi: 10.1111/j.1749-6632.1999.tb09283.x.PubMedGoogle Scholar
  61. Diamond, D., Campbell, A., Park, C., Halonen, J., & Zoladz, P. (2007). The temporal dynamics model of emotional memory processing: A synthesis on the neurobiological basis of stress-induced amnesia, flashbulb and traumatic memories, and the Yerkes-Dodson law. Neural Plasticity, 2007, 1–33. doi: 10.1155/NP .Google Scholar
  62. Drevets, W. C. (2007). Orbitofrontal cortex function and structure in depression. Annals of the New York Academy of Sciences, 1121, 499–527. doi: 10.1196/annals.1401.029.PubMedGoogle Scholar
  63. du Boisgueheneuc, F., Levy, R., Volle, E., Seassau, M., Duffau, H., Kinkingnehun, S., et al. (2006). Functions of the left superior frontal gyrus in humans: A lesion study. Brain, 129(Pt 12), 3315–3328. doi: 10.1093/brain/awl244.PubMedGoogle Scholar
  64. Edgington, E. S. (1987). Randomization tests (2nd ed., pp. 74–97). New York: Marcel Dekker, Inc.Google Scholar
  65. Ehlers, C. L., & Schuckit, M. A. (1988). EEG response to ethanol in sons of alcoholics. Psychopharmacology Bulletin, 24, 434–437.PubMedGoogle Scholar
  66. Ehlers, C. L., & Schuckit, M. A. (1990). EEG fast frequency activity in the sons of alcoholics. Biological Psychiatry, 27, 631–641. doi: 10.1016/0006-3223(90)90531-6.PubMedGoogle Scholar
  67. Ehlers, C. L., & Schuckit, M. A. (1991). Evaluation of EEG alpha activity in sons of alcoholics. Neuropsychopharmacology, 4, 199–205.PubMedGoogle Scholar
  68. Ehlers, C. L., Wall, T. L., & Schuckit, M. A. (1989). EEG spectral characteristics following ethanol administration in young men. Electroencephalography and Clinical Neurophysiology, 7, 179–187. doi: 10.1016/0013-4694(89)90118-1.Google Scholar
  69. Ersche, K., Fletcher, P., Roiser, J., Fryer, T., London, M., Robbins, T. W., et al. (2006). Differences in orbitofrontal activation during decision-making between methadone-maintained opiate users, heroin users and healthy volunteers. Psychopharmacology, 188(3), 364–373. doi: 10.1007/s00213-006-0515-z.PubMedGoogle Scholar
  70. Eshel, N., Nelson, E., Blair, R., Pine, D., & Ernst, M. (2007). Neural substrates of choice selection in adults and adolescents: Development of the ventrolateral prefrontal and anterior cingulate cortices. Neuropsychologia, 45(6), 1270–1279. doi: 10.1016/j.neuropsychologia.2006.10.004.PubMedGoogle Scholar
  71. Evans, K., Wright, C., Wedig, M., Gold, A., Pollack, M., & Rauch, S. (2007). A functional MRI study of amygdala responses to angry schematic faces in social anxiety disorder. Depression and Anxiety, 25(6), 496–505. doi: 10.1002/da.20347.Google Scholar
  72. Everitt, B. J., & Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: From actions to habits to compulsions. Nature Neuroscience, 8(11), 1481–1489. doi: 10.1038/nn1579.PubMedGoogle Scholar
  73. Fahim, C., Stip, E., Mancini-Marie, A., Potvin, S., & Malaspina, D. (2007). Orbitofrontal dysfunction in a monozygotic twin discordant for postpartum affective psychosis: A functional magnetic resonance imaging study. Bipolar Disorders, 9(5), 541–545. doi: 10.1111/j.1399-5618.2007.00404.x.PubMedGoogle Scholar
  74. Fergusson, D. M., Boden, J. M., & Horwood, L. J. (2008). Exposure to childhood sexual and physical abuse and adjustment in early adulthood. Child Abuse and Neglect, 32(6), 607–619. doi: 10.1016/j.chiabu.2006.12.018.PubMedGoogle Scholar
  75. Fleck, M., Daselaar, S., Dobbins, I., & Cabeza, R. (2006). Role of prefrontal and anterior cingulate regions in decision-making processes shared by memory and nonmemory tasks. Cerebral Cortex (New York, N.Y.), 16(11), 1623–1630. doi: 10.1093/cercor/bhj097.Google Scholar
  76. Fortin, A., Ptito, A., Faubert, J., & Ptito, M. (2002). Cortical areas mediating stereopsis in the human brain: A PET study. NeuroReport, 13(6), 895–898. doi: 10.1097/00001756-200205070-00032.PubMedGoogle Scholar
  77. Fossati, A., Feeney, J. A., Donati, D., Donini, M., Novella, L., Bagnato, M., et al. (2003). Personality disorders and adult attachment dimensions in a mixed psychiatric sample: A multivariate study. The Journal of Nervous and Mental Disease, 191(1), 30–37. doi: 10.1097/00005053-200301000-00006.PubMedGoogle Scholar
  78. Fossati, P., Radtchenko, A., & Boyer, P. (2004). Neuroplasticity: From MRI to depressive symptoms. European Neuropsychopharmacology, 14(Suppl 5), S503–S510. doi: 10.1016/j.euroneuro.2004.09.001.PubMedGoogle Scholar
  79. Fox, N. A., Henderson, H. A., & Marshall, P. J. (2001). The biology of temperament: An integrative approach. In C. A. Nelson & M. Luciana (Eds.), Handbook of developmental cognitive neuroscience (pp. 631–645). Cambridge: MIT Press.Google Scholar
  80. Frank, M. J., & Claus, E. D. (2006). Anatomy of a decision: Striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal. Psychological Review, 113(2), 300–326. doi: 10.1037/0033-295X.113.2.300.PubMedGoogle Scholar
  81. Frey, B., Andreazza, A., Nery, F., Martins, M., Quevedo, J., Soares, J. C., et al. (2007). The role of hippocampus in the pathophysiology of bipolar disorder. Behavioural Pharmacology, 18(5–6), 419–430. doi: 10.1097/FBP.0b013e3282df3cde.PubMedGoogle Scholar
  82. Friederich, H. C., Uher, R., Brooks, S., Gianpietro, V., Brammer, M., Williams, S. C., et al. (2007). I’m not as slim as that girl: Neural bases of body shape self-comparison to media images. NeuroImage, 37(2), 674–681. doi: 10.1016/j.neuroimage.2007.05.039.PubMedGoogle Scholar
  83. Gallucci, N. (1997). On the identification of patterns of substance abuse with the MMPI-A. Psychological Assessment, 9(3), 224–232. doi: 10.1037/1040-3590.9.3.224.Google Scholar
  84. Goel, V., Grafman, J., Sadato, N., & Hallett, M. (1995). Modeling other minds. NeuroReport, 6(13), 1741–1746. doi: 10.1097/00001756-199509000-00009.PubMedGoogle Scholar
  85. Gogate, N., Geidd, J., Janson, K., & Rapport, J. L. (2001). Brain imaging in normal and abnormal brain development: New perspectives for child psychiatry. Clinical Neuroscience Research, 1, 283–290. doi: 10.1016/S1566-2772(01)00014-7.Google Scholar
  86. Goldstein, R., Tomasi, D., Alia-Klein, N., Cottone, L., Zhang, L., Telang, F., et al. (2007a). Subjective sensitivity to monetary gradients is associated with frontolimbic activation to reward in cocaine abusers. Drug and Alcohol Dependence, 87(2–3), 233–240. doi: 10.1016/j.drugalcdep.2006.08.022.PubMedGoogle Scholar
  87. Goldstein, R., Tomasi, D., Rajaram, S., Cottone, L., Zhang, L., Maloney, T., et al. (2007b). Role of the anterior cingulate and medial orbitofrontal cortex in processing drug cues in cocaine addiction. Neuroscience, 144(4), 1153–1159. doi: 10.1016/j.neuroscience.2006.11.024.PubMedGoogle Scholar
  88. Good, P. (1993). Permutation tests: A practical guide to resampling methods for testing hypotheses (pp. 24–45). New York: Springer-Verlag.Google Scholar
  89. Good, P. (2005). Permutation, parametric, and bootstrap tests of hypotheses (3rd ed., pp. 79–140). Springer Series in Statistics. Springer: New YorkGoogle Scholar
  90. Grant, B. F., & Dawson, D. A. (1997). Age at onset of alcohol use and its association with DSM-IV alcohol abuse and dependence: Results from the National Longitudinal Alcohol Epidemiologic Survey. Journal of Substance Abuse, 9, 103–110. doi: 10.1016/S0899-3289(97)90009-2.PubMedGoogle Scholar
  91. Grillon, C. (2007). Models and mechanisms of anxiety: Evidence from startle studies. Psychopharmacology, 199(3), 421–437. doi: 10.1007/s00213-007-1019-1.PubMedGoogle Scholar
  92. Gusnard, D. A. (2005). Being a self: Considerations from functional imaging. Consciousness and Cognition, 14(4), 679–697. doi: 10.1016/j.concog.2005.04.004.PubMedGoogle Scholar
  93. Gusnard, D. A., Akbudak, E., Shulman, G. L., & Raichle, M. E. (2001). Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(7), 4259–4264. doi: 10.1073/pnas.071043098.PubMedGoogle Scholar
  94. Harrison, B. J., Pujol, J., Lopez-Sola, M., Hernandez-Ribas, R., Deus, J., Ortiz, H., et al. (2008). Consistency and functional specialization in the default mode brain network. Proceedings of the National Academy of Sciences of the United States of America, 105(28), 9781–9786. doi: 10.1073/pnas.0711791105.PubMedGoogle Scholar
  95. Heiser, M., Iacoboni, M., Maeda, F., Marcus, J., & Mazziotta, J. (2003). The essential role of Broca’s area in imitation. The European Journal of Neuroscience, 17(5), 1123–1128. doi: 10.1046/j.1460-9568.2003.02530.x.PubMedGoogle Scholar
  96. Holahan, C. J., & Moos, R. H. (1987). Personal and contextual determinants of coping strategies. Journal of Personality and Social Psychology, 52(5), 946–955. doi: 10.1037/0022-3514.52.5.946.PubMedGoogle Scholar
  97. Holmes, A. P., Blair, R. C., Watson, J. D. G., & Ford, I. (1996). Nonparametric analysis of statistic images from functional mapping experiments. Journal of Cerebral Blood Flow and Metabolism, 16, 7–22. doi: 10.1097/00004647-199601000-00002.PubMedGoogle Scholar
  98. Hyman, S. E., & Malenka, R. C. (2001). Addiction and the brain: The neurobiology of compulsion and its persistence. Nature Reviews. Neuroscience, 2(10), 695–703. doi: 10.1038/35094560.PubMedGoogle Scholar
  99. Joels, M., Krugers, H., & Karst, H. (2007). Stress-induced changes in hippocampal function. Progress in Brain Research, 167, 3–15. doi: 10.1016/S0079-6123(07)67001-0.Google Scholar
  100. Johnson, M. (2001). Functional brain development in humans. Nature Reviews. Neuroscience, 2, 475–483. doi: 10.1038/35081509.PubMedGoogle Scholar
  101. Josephs, R. A., & Steele, C. M. (1990). The two faces of alcohol myopia: Attentional mediation of psychological stress. Journal of Abnormal Psychology, 99(2), 115–126. doi: 10.1037/0021-843X.99.2.115.PubMedGoogle Scholar
  102. Kaplan, R. F., Glueck, B. C., Hesselbrock, M. N., & Reed, H. B. (1985). Power and coherence analysis of the EEG in hospitalized alcoholics and nonalcoholic controls. Journal of Studies on Alcohol, 46, 122–127.PubMedGoogle Scholar
  103. Kaplan, R., Hesselbrock, V., O’Connor, S., & Depalma, N. (1988). Behavioral and EEG Responses to alcohol in nonalcoholic men with a family history of alcoholism. Progress in Neuro-Pharmacology & Biological Psychiatry, 12, 873–885. doi: 10.1016/0278-5846(88)90083-8.Google Scholar
  104. Kim, S. H., & Hamann, S. (2007). Neural correlates of positive and negative emotion regulation. Journal of Cognitive Neuroscience, 19(5), 776–798. doi: 10.1162/jocn.2007.19.5.776.PubMedGoogle Scholar
  105. Kohnke, M. D., Wiatr, G., Kolb, W., Kohnke, A. M., Schick, S., Lutz, U., et al. (2003). Plasma homovanillic acid: A significant association with alcoholism is independent of a functional polymorphism of the human catechol-O-methyltransferase gene. Neuropsychopharmacology, 28(5), 1004–1010.PubMedGoogle Scholar
  106. Krain, A., Wilson, A., Arbuckle, R., Castellanos, F., & Milham, M. (2006). Distinct neural mechanisms of risk and ambiguity: A meta-analysis of decision-making. NeuroImage, 32(1), 477–484. doi: 10.1016/j.neuroimage.2006.02.047.PubMedGoogle Scholar
  107. Lacerda, A. L., Hardan, A. Y., Yorbik, O., Vemulapalli, M., Prasad, K. M., & Keshavan, M. S. (2007). Morphology of the orbitofrontal cortex in first-episode schizophrenia: Relationship with negative symptomatology. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 31(2), 510–516. doi: 10.1016/j.pnpbp.2006.11.022.PubMedGoogle Scholar
  108. Lancaster, J. L., Rainey, L. H., Summerlin, J. L., Freitas, C. S., Fox, P. T., Evans, A. C., et al. (1997). Automated labeling of the human brain: A preliminary report on the development and evaluation of a forward-transform Method. Human Brain Mapping, 5, 238–242. doi:10.1002/(SICI)1097-0193(1997)5:4<238::AID-HBM6>3.0.CO;2-4.Google Scholar
  109. Lancaster, J. L., Woldorff, M. G., Parsons, L. M., Liotti, M., Freitas, C. S., Rainey, L., et al. (2000). Automated Talairach atlas labels for functional brain mapping. Human Brain Mapping, 10, 120–131. doi:10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8.PubMedGoogle Scholar
  110. Lehmann, D., Faber, P. L., Achermann, P., Jeanmonod, D., Gianotti, L. R., & Pizzagalli, D. (2001). Brain sources of EEG gamma frequency during volitionally meditation-induced, altered states of consciousness, and experience of the self. Psychiatry Research, 108(2), 111–121. doi: 10.1016/S0925-4927(01)00116-0.PubMedGoogle Scholar
  111. Lehmann, D., Faber, P. L., Galderisi, S., Herrmann, W. M., Kinoshita, T., Koukkou, M., et al. (2005). EEG microstate duration and syntax in acute, medication-naive, first-episode schizophrenia: A multi-center study. Psychiatry Research, 138(2), 141–156. doi: 10.1016/j.pscychresns.2004.05.007.PubMedGoogle Scholar
  112. Lehmann, D., Faber, L., Gianotti, L., Kochi, K., & Pascual-Marqui, R. (2006). Coherence and phase locking in the scalp EEG and between LORETA model sources, and microstates as putative mechanisms of brain temporo-spatial functional organization. Journal of Physiology, Paris, 99(1), 29–36. doi: 10.1016/j.jphysparis.2005.06.005.PubMedGoogle Scholar
  113. Levesque, J., Joanette, Y., Mensour, B., Beaudoin, G., Leroux, J. M., Bourgouin, P., et al. (2004). Neural basis of emotional self-regulation in childhood. Neuroscience, 129(2), 361–369. doi: 10.1016/j.neuroscience.2004.07.032.PubMedGoogle Scholar
  114. Lorincz, M. L., Crunelli, V., & Hughes, S. W. (2008). Cellular dynamics of cholinergically induced alpha (8–13 Hz) rhythms in sensory thalamic nuclei in vitro. The Journal of Neuroscience, 28(3), 660–671. doi: 10.1523/JNEUROSCI.4468-07.2008.PubMedGoogle Scholar
  115. Luczak, A. (2006). Spatial embedding of neuronal stress modeled by diffuse growth. Journal of Neuroscience Methods, 157, 132–141. doi: 10.1016/j.jneumeth.2006.03.024.PubMedGoogle Scholar
  116. Lukas, S. E. (1991). Topographic mapping during cocaine-induced intoxication and self-administration. In G. Racagni, N. Brunello & T. Fukuda (Eds.), Biological psychiatry (Vol. 2, pp. 25–29). New York: Elsevier Science Publishers.Google Scholar
  117. Lukas, S. E. (1993). Advanced electrophysiological imaging techniques for studying drug effects. In E. D. London (Ed.), Imaging drug action in the brain, chapter 15 (pp. 389–404). Boca Raton, FL: CRC Press.Google Scholar
  118. Lukas, S. E., Mendelson, J. H., & Benedikt, R. (1995). Electroencephalographic correlates of marihuana-induced euphoria. Drug and Alcohol Dependence, 37, 131–140. doi: 10.1016/0376-8716(94)01067-U.PubMedGoogle Scholar
  119. Lyvers, M., & Yakimoff, M. (2003). Neuropsychological correlates of opioid dependence and withdrawal. Addictive Behaviors, 28(3), 605–611. doi: 10.1016/S0306-4603(01)00253-2.PubMedGoogle Scholar
  120. Malin, E. L., Ibrahim, D. Y., Tu, J. W., & McGaugh, J. L. (2007). Involvement of the rostral anterior cingulate cortex in consolidation of inhibitory avoidance memory: Interaction with the basolateral amygdala. Neurobiology of Learning and Memory, 87(2), 295–302. doi: 10.1016/j.nlm.2006.09.004.PubMedGoogle Scholar
  121. Mata, I., Rodriguez-Sanchez, J. M., Pelayo-Teran, J. M., Perez-Iglesias, R., Gonzalez-Blanch, C., Ramirez-Bonilla, M., et al. (2008). Cannabis abuse is associated with decision-making impairment among first-episode patients with schizophrenia-spectrum psychosis. Psychological Medicine, 38(9), 1257–1266. doi: 10.1017/S0033291707002218.PubMedGoogle Scholar
  122. Matto, H., Miller, K., & Spera, C. (2007). Examining the relative importance of social context referents in predicting intention to change substance abuse behavior using the EASE. Addictive Behaviors, 32(9), 1826–1834. doi: 10.1016/j.addbeh.2006.12.015.PubMedGoogle Scholar
  123. McDermott, P., Alterman, A., Brown, L., Zaballero, A., Snider, E., & McKay, J. (1996). Construct refinement and confirmation for the addiction severity index. Psychological Assessment, 8(2), 182–189. doi: 10.1037/1040-3590.8.2.182.Google Scholar
  124. McEwen, B. (2000). The neurobiology of stress: From serendipity to clinical relevance. Brain Research, 886(1–2), 172–189. doi: 10.1016/S0006-8993(00)02950-4.PubMedGoogle Scholar
  125. McNamara, R. K., Jandacek, R., Rider, T., Tso, P., Hahn, C. G., Richtand, N. M., et al. (2007). Abnormalities in the fatty acid composition of the postmortem orbitofrontal cortex of schizophrenic patients: Gender differences and partial normalization with antipsychotic medications. Schizophrenia Research, 91(1–3), 37–50. doi: 10.1016/j.schres.2006.11.027.PubMedGoogle Scholar
  126. Michael, A., Mirza, K. A., Mukundan, C., & Channabasavanna, S. M. (1993). Interhemispheric electroencephalographic coherence as a biological marker in alcoholism. Acta Psychiatrica Scandinavica, 87, 213–217. doi: 10.1111/j.1600-0447.1993.tb03358.x.PubMedGoogle Scholar
  127. New, A. S., Hazlett, E. A., Buchsbaum, M. S., Goodman, M., Mitelman, S. A., Newmark, R., et al. (2007). Amygdala-prefrontal disconnection in borderline personality disorder. Neuropsychopharmacology, 32(7), 1629–1640. doi: 10.1038/sj.npp.1301283.PubMedGoogle Scholar
  128. Newcomb, M., & Felix-Ortiz, M. (1992). Multiple protective and risk factors for drug use and abuse: Cross-sectional and prospective findings. Journal of Personality and Social Psychology, 63(2), 280–296. doi: 10.1037/0022-3514.63.2.280.PubMedGoogle Scholar
  129. O’Doherty, J. P. (2007). Lights, Camembert, Action! The role of human orbitofrontal cortex in encoding stimuli, rewards and choices. Annals of the New York Academy of Sciences, 1121, 254–272. doi: 10.1196/annals.1401.036.PubMedGoogle Scholar
  130. Osipova, D., Takashima, A., Oostenveld, R., Fernandez, G., Maris, E., & Jensen, O. (2006). Theta and gamma oscillations predict encoding and retrieval of declarative memory. The Journal of Neuroscience, 26(28), 7523–7531. doi: 10.1523/JNEUROSCI.1948-06.2006.PubMedGoogle Scholar
  131. Pais-Vieira, M., Lima, D., & Galhardo, V. (2007). Orbitofrontal cortex lesions disrupt risk assessment in a novel serial decision-making task for rats. Neuroscience, 145(1), 225–231. doi: 10.1016/j.neuroscience.2006.11.058.PubMedGoogle Scholar
  132. Papageorgiou, C. C., Sfagos, C., Kosma, K. K., Kontoangelos, K. A., Triantafyllou, N., Vassilopoulos, D., et al. (2007). Changes in loreta and conventional patterns of p600 after steroid treatment in multiple sclerosis patients. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 31, 234–241. doi: 10.1016/j.pnpbp.2006.07.005.PubMedGoogle Scholar
  133. Pascual-Marqui, R. D. (1999). Review of methods for solving the EEG inverse problem. International Journal of Bioelectromagnetism, 1, 75–86.Google Scholar
  134. Pascual-Marqui, R. D. (2002). Standardized low resolution brain electromagnetic tomography (sLORETA): Technical details. Methods and Findings in Experimental and Clinical Pharmacology, 24D, 5–12.Google Scholar
  135. Pascual-Marqui, R. D., Esslen, M., Kochi, K., & Lehmann, D. (2002a). Functional imaging with low-resolution brain electromagnetic tomography (LORETA): A review. Methods and Findings in Experimental and Clinical Pharmacology, 24(Suppl C), 91–95.PubMedGoogle Scholar
  136. Pascual-Marqui, R. D., Esslen, M., Kochi, K., & Lehmann, D. (2002b). Functional imaging with low resolution brain electromagnetic tomography (LORETA): A review. Methods and Findings in Experimental and Clinical Pharmacology, 24C, 91–95.Google Scholar
  137. Pascual-Marqui, R. D., Lehmann, D., Koenig, T., Kochi, K., Merlo, M. C., Hell, D., et al. (1999). Low resolution brain electromagnetic tomography (LORETA) functional imaging in acute, neuroleptic-naive, first-episode, productive schizophrenia. Psychiatry Research, 90(3), 169–179. doi: 10.1016/S0925-4927(99)00013-X.PubMedGoogle Scholar
  138. Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1994). Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain. International Journal of Psychophysiology, 18, 49–65. doi: 10.1016/0167-8760(84)90014-X.PubMedGoogle Scholar
  139. Peniston, E. G., & Kulkosky, P. J. (1989). Alpha-theta brainwave training and beta endorphin levels in alcoholics. Alcoholism, Clinical and Experimental Research, 13, 271–279. doi: 10.1111/j.1530-0277.1989.tb00325.x.PubMedGoogle Scholar
  140. Peniston, E. G., & Kulkosky, P. J. (1990). Alcoholic personality and alpha-theta brainwave training. Medical Psychotherapy, 2, 37–55.Google Scholar
  141. Peniston, E. G., & Kulkosky, P. J. (1991). Alpha-theta brain wave neurofeedback for Vietnam veterans with combat related post traumatic stress disorder. Medical Psychotherapy, 4, 1–14.Google Scholar
  142. Petraitis, J., Flay, B., & Miller, T. (1995). Reviewing theories of adolescent substance use: Organizing pieces in the puzzle. Psychological Bulletin, 117(1), 67–86. doi: 10.1037/0033-2909.117.1.67.PubMedGoogle Scholar
  143. Posner, M. I., & Rothbart, M. K. (1998). Attention, self-regulation and consciousness. Philosophical Transactions of the Royal Society B. Biological Sciences, 353, 1915–1927. doi: 10.1098/rstb.1998.0344.Google Scholar
  144. Rangaswamy, M., Porjesz, B., Chorlian, D. B., Wang, K., Jones, K. A., Bauer, L. O., et al. (2002). Beta power in the EEG of alcoholics. Biological Psychiatry, 52(8), 831–842. doi: 10.1016/S0006-3223(02)01362-8.PubMedGoogle Scholar
  145. Roesch, M., Calu, D., Burke, K., & Schoenbaum, G. (2007). Should I stay or should I go? Transformation of time-discounted rewards in orbitofrontal cortex and associated brain circuits. Annals of the New York Academy of Sciences, 1104, 21–34. doi: 10.1196/annals.1390.001.PubMedGoogle Scholar
  146. Rosen, B. R., Belliveau, J. W., Aronen, H. J., Kennedy, D., Buchbinder, B. R., Fischman, A., et al. (1991). Susceptibility contrast imaging of cerebral blood volume: Human experience. Magnetic Resonance in Medicine, 22(2), 293–299. doi: 10.1002/mrm.1910220227. discussion 300–293.PubMedGoogle Scholar
  147. Rouse, S., Butcher, J., & Miller, B. (1999). Assessment of substance abuse in psychotherapy clients: The effectiveness of the MMPI-2 substance abuse scales. Psychological Assessment, 11(1), 101–107. doi: 10.1037/1040-3590.11.1.101.Google Scholar
  148. Sakagami, M., & Watanabe, M. (2007). Integration of cognitive and motivational information in the primate lateral prefrontal cortex. Annals of the New York Academy of Sciences, 1104, 89–107. doi: 10.1196/annals.1390.010.PubMedGoogle Scholar
  149. Scott, W. C., Brod, T. M., Sideroff, S., Kaiser, D., & Sagan, M. (2002, May 15). Type-specific EEG biofeedback improves residential substance abuse treatment. Paper presented at American Psychiatric Association Annual Meeting.Google Scholar
  150. Scott, W., & Kaiser, D. (1998). Augmenting chemical dependency treatment with neurofeedback training. Journal of Neurotherapy, 3(1), 66.Google Scholar
  151. Scott, W. C., Kaiser, D., Othmer, S., & Sideroff, S. I. (2005). Effects of an EEG biofeedback protocol on a mixed substance abusing population. The American Journal of Drug and Alcohol Abuse, 31(3), 455–469. doi: 10.1081/ADA-200056807.PubMedGoogle Scholar
  152. Seger, C., Stone, M., & Keenan, J. (2004). Cortical activations during judgments about the self and another person. Neuropsychologia, 42(9), 1168–1177. doi: 10.1016/j.neuropsychologia.2004.02.003.PubMedGoogle Scholar
  153. Shad, M. U., Muddasani, S., & Keshavan, M. S. (2006). Prefrontal subregions and dimensions of insight in first-episode schizophrenia—A pilot study. Psychiatry Research, 146(1), 35–42. doi: 10.1016/j.pscychresns.2005.11.001.PubMedGoogle Scholar
  154. Sherlin, L., Budzynski, T., Kogan-Budzynski, H., Congedo, M., Fischer, M. E., & Buchwald, D. (2006). Low-resolution brain tomography (LORETA) of monozygotic twins disconcordant for chronic fatigue syndrome. NeuroImage, 34(4), 1438–1442. doi: 10.1016/j.neuroimage.2006.11.007.PubMedGoogle Scholar
  155. Smythies, J. R. (1966). The neurological foundations of psychiatry: An outline of the mechanisms of emotion, memory, learning and the organization of behaviour, with particular regard to the limbic system (pp. 40–102). Oxford: Blackwell Scientific.Google Scholar
  156. Sokhadze, E. M., Cannon, R. L., & Trudeau, D. L. (2008). EEG biofeedback as a treatment for substance use disorders: Review, rating of efficacy, and recommendations for further research. Applied Psychophysiology and Biofeedback, 33(1), 1–63. doi: 10.1007/s10484-007-9047-5.PubMedGoogle Scholar
  157. Stein, L., Graham, J., Ben-Porath, Y., & McNulty, J. (1999). Using the MMPI-2 to detect substance abuse in an outpatient mental health setting. Psychological Assessment, 11(1), 94–100. doi: 10.1037/1040-3590.11.1.94.Google Scholar
  158. Talairach, J., & Tournoux, P. (1988). Co-planar stereoaxic atlas of the human brain. New York: Theme Medical Publishers.Google Scholar
  159. Tapert, S. F., Brown, G. G., Baratta, M. V., & Brown, S. A. (2004). fMRI BOLD response to alcohol stimuli in alcohol dependent young women. Addictive Behaviors, 29(1), 33–50. doi: 10.1016/j.addbeh.2003.07.003.PubMedGoogle Scholar
  160. Toro, C., & Deakin, J. (2005). NMDA receptor subunit NRI and postsynaptic protein PSD-95 in hippocampus and orbitofrontal cortex in schizophrenia and mood disorder. Schizophrenia Research, 80(2–3), 323–330. doi: 10.1016/j.schres.2005.07.003.PubMedGoogle Scholar
  161. Toro, C., Hallak, J., Dunham, J., & Deakin, J. (2006). Glial fibrillary acidic protein and glutamine synthetase in subregions of prefrontal cortex in schizophrenia and mood disorder. Neuroscience Letters, 404(3), 276–281. doi: 10.1016/j.neulet.2006.05.067.PubMedGoogle Scholar
  162. Towle, V. L., Bolaños, J., Suarez, D., Tan, K., Grzeszczuk, R., Levin, D. N., et al. (1993). The spatial location of EEG electrodes: Locating the best fitting sphere relative to cortical anatomy. Electroencephalography and Clinical Neurophysiology, 86, 1–6. doi: 10.1016/0013-4694(93)90061-Y.PubMedGoogle Scholar
  163. Tsao, D. Y., & Livingstone, M. S. (2008). Mechanisms of face perception. Annual Review of Neuroscience, 31, 411–437. doi: 10.1146/annurev.neuro.30.051606.094238.PubMedGoogle Scholar
  164. van Pelt, J. (1997). Effect of pruning on dendritic tree topology. Journal of Theoretical Biology, 186, 17–32. doi: 10.1006/jtbi.1996.0341.PubMedGoogle Scholar
  165. Verdejo-Garcia, A., Rivas-Perez, C., Lopez-Torrecillas, F., & Perez-Garcia, M. (2006). Differential impact of severity of drug use on frontal behavioral symptoms. Addictive Behaviors, 31(8), 1373–1382. doi: 10.1016/j.addbeh.2005.11.003.PubMedGoogle Scholar
  166. Verdejo-Garcia, A., Rivas-Perez, C., Lopez-Vilar, R., & Perez-Garcia, M. (2007). Strategic self-regulation, decision-making and emotion processing in poly-substance abusers in their first year of abstinence. Drug and Alcohol Dependence, 86(2–3), 139–146. doi: 10.1016/j.drugalcdep.2006.05.024.PubMedGoogle Scholar
  167. Wallis, J. D. (2007). Orbitofrontal cortex and its contribution to decision-making. Annual Review of Neuroscience, 30, 31–56. doi: 10.1146/annurev.neuro.30.051606.094334.PubMedGoogle Scholar
  168. Walton, M., Croxson, P., Behrens, T., Kennerley, S., & Rushworth, M. (2007). Adaptive decision making and value in the anterior cingulate cortex. NeuroImage, 36(Suppl 2), T142–T154. doi: 10.1016/j.neuroimage.2007.03.029.PubMedGoogle Scholar
  169. Weiskopf, N., Veit, R., Erb, M., Mathiak, K., Grodd, W., Goebel, R., et al. (2003). Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): Methodology and exemplary data. NeuroImage, 19(3), 577–586. doi: 10.1016/S1053-8119(03)00145-9.PubMedGoogle Scholar
  170. Westfall, P. H., & Young, S. S. (1993). Resampling based multiple testing. Examples and methods for p-values adjustment. New York: Wiley & Sons.Google Scholar
  171. Wiers, R. W., van de Luitgaarden, J., van den Wildenberg, E., & Smulders, F. T. (2005). Challenging implicit and explicit alcohol-related cognitions in young heavy drinkers. Addiction (Abingdon, England), 100(6), 806–819. doi: 10.1111/j.1360-0443.2005.01064.x.Google Scholar
  172. Windmann, S., Kirsch, P., Mier, D., Stark, R., Walter, B., Gunturkun, O., et al. (2006). On framing effects in decision making: Linking lateral versus medial orbitofrontal cortex activation to choice outcome processing. Journal of Cognitive Neuroscience, 18(7), 1198–1211. doi: 10.1162/jocn.2006.18.7.1198.PubMedGoogle Scholar
  173. Winstanley, C. A., La Plant, Q., Theobald, D. E., Green, T. A., Bachtell, R. K., Perrotti, L. I., et al. (2007). DeltaFosB induction in orbitofrontal cortex mediates tolerance to cocaine-induced cognitive dysfunction. The Journal of Neuroscience, 27(39), 10497–10507. doi: 10.1523/JNEUROSCI.2566-07.2007.PubMedGoogle Scholar
  174. Winterer, G., Enoch, M. A., White, K., Saylan, M., Coppola, R., & Goldman, D. (2003a). EEG phenotype in alcoholism: Increased coherence in the depressive subtype. Acta Psychiatrica Scandinavica, 108, 51–60. doi: 10.1034/j.1600-0447.2003.00060.x.PubMedGoogle Scholar
  175. Winterer, G., Smolka, M., Samochowiec, J., Ziller, M., Mahlberg, R., Gallinat, J., et al. (2003b). Association of EEG coherence and an exonic GABABR1 gene polymorphism. American Journal of Medical Genetics, 117B, 51–56. doi: 10.1002/ajmg.b.10031.PubMedGoogle Scholar
  176. Zumsteg, D., Andrade, D. M., & Wennberg, R. A. (2006). Source localization of small sharp spikes: Low resolution electromagnetic tomography (loreta) reveals two distinct cortical sources. Clinical Neurophysiology, 117, 1380–1387. doi: 10.1016/j.clinph.2006.02.019.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Brain Research and Neuropsychology Laboratory, Department of PsychologyUniversity of Tennessee at KnoxvilleKnoxvilleUSA

Personalised recommendations