Applied Psychophysiology and Biofeedback

, Volume 32, Issue 3–4, pp 169–183 | Cite as

Changes in EEG Current Sources Induced by Neurofeedback in Learning Disabled Children. An Exploratory Study

  • Thalía Fernández
  • Thalía Harmony
  • Antonio Fernández-Bouzas
  • Lourdes Díaz-Comas
  • Roberto A. Prado-Alcalá
  • Pedro Valdés-Sosa
  • Gloria Otero
  • Jorge Bosch
  • Lídice Galán
  • Efraín Santiago-Rodríguez
  • Eduardo Aubert
  • Fabiola García-Martínez
Article

Abstract

The objective of this work was to explore Neurofeedback (NFB) effects on EEG current sources in Learning Disabled (LD) children, and to corroborate its beneficial consequences on behavioral and cognitive performance. NFB was given in twenty 30-min sessions to 11 LD children to reduce their abnormally high theta/alpha ratios (Experimental Group). Another five LD children with the same characteristics received a placebo treatment (Control Group). In the Control Group no changes in behavior or EEG current source were observed. In the Experimental Group, immediately after treatment children showed behavioral and cognitive improvements, but current source analysis showed few modifications; however, 2 months after treatment many changes occurred: a decrease in current of frequencies within the theta band, mainly in left frontal and cingulate regions, and enhancement in current of frequencies within the alpha band, principally in the right temporal lobe and right frontal regions, and of frequencies within the beta band, mainly in left temporal, right frontal and cingulate cortex regions. In conclusion, NFB is a possibly efficacious treatment for LD children with an abnormally high theta/alpha ratio in any lead. The changes observed in EEG current sources may reflect the neurophysiological bases of the improvement that children experienced in their behavioral and cognitive activities.

Keywords

Neurofeedback Learning Disabled children EEG current sources EEG normative database Control and Experimental Groups 

Notes

Acknowledgments

The authors acknowledge the technical assistance of Héctor Belmont, Rosa María Hernández, Salvador Ocampo, Rafael Silva, Pilar Galarza, María de Lourdes Lara, and Oscar U. Cárdenas. The authors thank Dorothy Pless and Marcela Sánchez-Alvarez for editing the manuscript, and Gloria Avecilla, Wendy Herrera and Georgina Aboytes for their collaboration. This project was supported in part by grants from DGAPA (IN226001, IN204103) and CONCYTEQ (2001, 2004).

References

  1. Abarbanel, A. (1999). The neural underpinnings of neurofeedback training. In J. R. Evans & A. Abarbanel (Eds.), Introduction to Quantitative EEG, Neurofeedback (pp. 311–340). New York: Academic Press.Google Scholar
  2. Alvarez, A., Pérez-Avalo, M. C., & Morenza, L. (1992). Neuropsychological assessment of learning-disorder children with paroxysmal EEG activity. New Issues in Neurosciences, IV, 40–50.Google Scholar
  3. American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC, pp. 179–286.Google Scholar
  4. Baehr, E., Rosenfeld, J. P., Baehr, R., & Earnest, C. (1999). Clinical use of an alpha asymmetry neurofeedback protocol in the treatment of Mood Disorders. In J.R. Evans & A. Abarbanel (Eds.), Introduction to quantitative EEG, neurofeedback (pp. 181–203). New York: Academic Press.Google Scholar
  5. Beauregard, M., & Levesque, J. (2006). Functional magnetic resonance imaging investigation of the effects of neurofeedback training on the neural bases of selective attention and response inhibition in children with attention-deficit/hyperactivity disorder. Applied Psychophysiology and Biofeedback, 31, 3–20.PubMedCrossRefGoogle Scholar
  6. Becerra, J., Fernández, T., Harmony, T., Caballero, M. I., García, F., Fernández-Bouzas, A., Santiago-Rodríguez, E., & Prado-Alcalá, R. A. (2006). Follow-up study of Learning-Disabled Children treated with Neurofeedback or Placebo. Clinical EEG and Neuroscience, 37, 198–203.PubMedGoogle Scholar
  7. Bernal, J., Harmony, T., Rodríguez, M., Reyes, A., Yáñez, G., Fernández, T., Galán, L., Silva, J., Fernández- Bouzas, A., Rodríguez, H., Guerrero, V., & Marosi, E. (2000). Auditory event related potentials in poor readers. International Journal of Psychophysiology, 36, 11–23.PubMedCrossRefGoogle Scholar
  8. Blair, R. C., & Karninski, W. (1993). An alternative method for significance testing of waveform difference potential. Psychophysiology, 30, 518–524.PubMedCrossRefGoogle Scholar
  9. Blair, R. C., & Karninski, W. (1994). Distribution-free statistical analyses of surface and volumetric maps. In R. W. Thatcher, M. Hallet, E. R. John, & M. Huerta (Eds.), Functional neuroimaging (pp. 19–28). New York: Academic Press.Google Scholar
  10. Bosch-Bayard, J., Valdés-Sosa, P., Virués-Alba, T., Aubert-Vázquez, E., John, E. R., Harmony, T., Riera-Díaz, J., & Trujillo-Barreto, N. (2001). 3D statistical parametric mapping of EEG source spectra by means of variable resolution electromagnetic tomography (VARETA). Clinical Electroencephalography, 32, 47–61.PubMedGoogle Scholar
  11. Butnik, S. M. (2005). Neurofeedback in adolescents and adults with attention deficit hyperactivity disorder. Journal of Clinical Psychology, 61, 621–625.PubMedCrossRefGoogle Scholar
  12. Chabot, R. J., di Michele, F., & John, E. R. (2001). The clinical role of computerized EEG in the evaluation and treatment of learning and attention disorders in children and adolescents. The Journal of Neuropsychiatry and Clinical Neurosciences, 13, 171–186.PubMedGoogle Scholar
  13. Collins, D. L., Neelin, P., Peter, T. M., & Evans, A. C. (1994). Automatic 3D registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography, 18, 192–205.PubMedCrossRefGoogle Scholar
  14. Congedo, M., Lubar, J. F., & Joffe, D. (2004). Low-resolution electromagnetic tomography Neurofeedback. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12, 387–397.PubMedCrossRefGoogle Scholar
  15. Egner, T., & Sterman, M. B. (2006). Neurofeedback treatment of epilepsy: from basic rationale to practical application. Expert Review of Neurotherapeutics, 6, 247–257.PubMedCrossRefGoogle Scholar
  16. Evans, A. C., Collins, D. L., Mills, S. R., Brown, E. D., Kelly, R. L., & Peters, T. M. (1993). 3D statistical neuroanatomical models from 305 MRI volumes. Proceedings of the IEEE-Nuclear Science Symposium and Medical Imaging Conference, pp. 1813–1817.Google Scholar
  17. Evans, A. C., Collins, D. L., Neelin, P., MacDonald, D., Kamber, M., & Marret, T. S. (1994). Three-dimensional correlative imaging. Applications in human brain mapping. In R. W. Thatcher, M. Hallet, T. Zeffiro, E. R. John, & M. Huerta (Eds.), Functional neuroimaging (pp. 145–162). New York: Academic Press.Google Scholar
  18. Fernández, T., Harmony, T., Rodríguez, M., Bernal, J., Silva, J., Reyes, A., & Marosi, E. (1995). EEG activation patterns during the performance of tasks involving different components of mental calculation. Electroencephalography and Clinical Neurophysiology, 94, 175–182.PubMedCrossRefGoogle Scholar
  19. Fernández, T., Harmony, T., Silva, J., Galán, L., Díaz-Comas, L., Bosch, J., Rodríguez, M., Fernández-Bouzas, A., Yáñez, G., Otero, G., & Marosi, E. (1998). Relationship of specific EEG frequencies at specific brain areas with performance. NeuroReport, 9, 3681–3687.PubMedGoogle Scholar
  20. Fernández, T., Harmony, T., Silva-Pereyra, J., Fernández-Bouzas, A., Gersenowies, J., Galán, L., Carbonell, F., Marosi, E., Otero, G., & Valdés, S. (2000). Specific EEG frequencies at specific brain areas and performance. NeuroReport, 11, 2663–2668.PubMedCrossRefGoogle Scholar
  21. Fernández, T., Harmony, T., Fernández-Bouzas, A., Silva, J., Herrera, W., Santiago-Rodríguez, E., & Sánchez, L. (2002). Sources of EEG activity in learning disabled children. Clinical Electroencephalography, 33, 160–164.PubMedGoogle Scholar
  22. Fernández, T., Herrera, W., Harmony, T., Díaz-Comas, L., Santiago, E., Sánchez, L., Bosch, J., Fernández-Bouzas, A., Otero, G., Ricardo-Garcell, J., Barraza, C., Aubert, E., Galán, L., & Valdés, P. (2003). EEG and behavioral changes following neurofeedback treatment in Learning Disabled children. Clinical Electroencephalography, 43, 145–152.Google Scholar
  23. Fernández-Bouzas, A., Harmony, T., Bosch, J., Aubert, E., Fernández, T., Valdés, P., Silva, J., Marosi, E., Martínez-López, M., & Casián, G. (1999). Sources of abnormal EEG activity in the presence of brain lesions. Clinical Electroencephalography, 30, 46–52.PubMedGoogle Scholar
  24. Fernández-Bouzas, A., Harmony, T., Fernández, T., Silva-Pereyra, J., Valdés, P., Bosch, J., Aubert, E., Casián, G., Otero-Ojeda, G., Ricardo, J., Hernández-Ballesteros, A., & Santiago, E. (2000). Sources of abnormal EEG activity in brain infarctions. Clinical Electroencephalography, 31, 165–169.PubMedGoogle Scholar
  25. Fox, D. J., Tharp, D. F., & Fox, L. C. (2005). Neurofeedback: An alternative and efficacious treatment for Attention Deficit Hyperactivity Disorder. Applied Psychophysiology and Biofeedback, 30, 365–373.PubMedCrossRefGoogle Scholar
  26. Fuchs, T., Birbaumer, N., Lutzenberger, W., Gruzelier, J. H., & Kaiser, J. (2003). Neurofeedback treatment for Attention- Deficit/Hyperactivity Disorder in children: A comparison with methylphenidate. Applied Psychophysiology and Biofeedback, 28, 1–12.PubMedCrossRefGoogle Scholar
  27. Galán, L., Biscay, R., Rodríguez, J. L., Pérez-Avalo, M.C., & Rodríguez, R. (1997). Testing topographic differences between event related brain potentials by using non-parametric combinations of permutation tests. Electroencephalography and Clinical Neurophysiology, 102, 240–247.PubMedCrossRefGoogle Scholar
  28. Gasser, T., Rousson, V., & Scheiter Gasser, U. (2003). EEG power and coherence in children with educational problems. Clinical Neurophysiology, 20, 273–282.CrossRefGoogle Scholar
  29. Goldstein, L. H. (1997). Effectiveness of psychological interventions for people with poorly controlled epilepsy. Journal of Neurology, Neurosurgery and Psychiatry, 63, 137–142.Google Scholar
  30. Hammond, D.C. (2005). Neurofeedback with anxiety and affective disorders. Child and Adolescent psychiatric clinics of North America, 14, 105–123.PubMedCrossRefGoogle Scholar
  31. Harmony, T., Marosi, E., Díaz de León, A. E., Becker, J., & Fernández, T. (1990a). Effect of sex, psychosocial disadvantages and biological risk factors on EEG maturation. Electroencephalography and clinical Neurophysiology, 75, 482–491.PubMedCrossRefGoogle Scholar
  32. Harmony, T., Hinojosa, G., Marosi, E., Becker, J., Fernández, T., Rodríguez, M., Reyes, A., & Rocha, C. (1990b). Correlation between EEG spectral parameters and an educational evaluation. International Journal of Neuroscience, 54, 147–155.PubMedGoogle Scholar
  33. Harmony, T., Fernández, T., Silva, J., Bosch, J., Valdés, P., Fernández-Bouzas, A., Galán, L., Aubert, E., & Rodríguez, D. (1999). Do specific EEG frequencies indicate different processes during mental calculation? Neuroscience Letters, 266, 25–28.PubMedCrossRefGoogle Scholar
  34. Harmony, T., Fernández, T., Fernández-Bouzas, A., Silva-Pereyra, J., Bosch, J., Díaz-Comas, L., & Galán, L. (2001). EEG changes during word and figure categorization. Clinical Neurophysiology, 112, 1486–1498.PubMedCrossRefGoogle Scholar
  35. Harmony, T., Fernández, T., Gersenowies, J., Galán, L., Fernández-Bouzas, A., Aubert, E., & Díaz-Comas, L. (2004). Specific EEG frequencies signal general common cognitive processes as well as specific task processes in man. International Journal of Psychophysiology, 53, 207–216.PubMedCrossRefGoogle Scholar
  36. Hernández, J. L., Valdés, P., Biscay, R., Virués, T., Szava, S., Bosch, J., Riquenes, A., & Clark, I. (1994). A global scale factor in brain topography. International Journal of Neuroscience, 76, 267–278.PubMedCrossRefGoogle Scholar
  37. Hilgard, E. R., & Marquis, D. G. (1940). Conditioning and learning. Appleton-Century-Crofts, New York.Google Scholar
  38. Holcomb, P. J., Ackerman, P. T., & Dyckman, R. A. (1986). Auditory event-related potentials in attention and reading disabled boys. International Journal of Psychophysiology, 3, 263–273.PubMedCrossRefGoogle Scholar
  39. Iglesias, A., & Derman, B. (1985). Prueba de lecto-escritura. México D.F.: Progreso.Google Scholar
  40. Iragui, V. J., Kutas, K., Mitchiner, M. R., & Hillyard, S. A. (1993). Effects of aging on event-related brain potentials and reaction times in an auditory oddball task. Psychophysiology 30, 10–22.PubMedGoogle Scholar
  41. John, E. R., Prichep, L., Ahn, H., Easton, P., Fridman, J., & Kaye, H. (1983). Neurometric evaluation of cognitive dysfunctions and neurological disorders in children. Progress in Neurobiology, 21, 239–290.PubMedCrossRefGoogle Scholar
  42. Kelley, M. (1997). Native americans, neurofeedback, and substance abuse theory. Journal of Neurotherapy, 3, 45–52.Google Scholar
  43. Kutas, M., & Dale, A. (1997). Electrical and magnetic readings of mental functions. In M. D. Rugg (Ed.), Cognitive neuroscience (pp 197–237). London: University College Press.Google Scholar
  44. La Vaque, T. J., Hammond, D. C., Trudeau, D., Monastra, V. J., Perry, J., & Lehrer, P. (2002). Template for developing guidelines for the evaluation of the clinical efficacy of psychophysiological interventions. Applied Psychophysiology and Biofeedback, 27, 273–281.CrossRefGoogle Scholar
  45. Leark, R. A., Dupuy, T. R., Greenberg, L. M., Corman, C. L., & Kindschi, C. L. (1999). T.O.V.A. professional guide. Los Alamitos: Universal Attention Disorders Inc.Google Scholar
  46. Leins U., Goth G., Hinterberger T., Klinger C., Rumpf N., & Strehl U. (2007). Neurofeedback for children with ADHD a comparison of SCP and theta/beta protocols. Applied Psychophysiology and Biofeedback, 32, 73–88.PubMedCrossRefGoogle Scholar
  47. Levesque, J., Beauregard, M., & Mensour, B. (2006). Effect of Neurofeedback training on the neural substrates of selective attention in children with attention-deficit/hyperactivity disorder: A functional magnetic resonance imaging study. Neuroscience Letters, 394, 216–221.PubMedCrossRefGoogle Scholar
  48. Linden, M., Habib, T., & Radojevic, V. (1996). A controlled study of the effects of EEG biofeedback on cognition and behavior of children with Attention Deficit Disorder and Learning Disabilities. Biofeedback and Self-regulation, 21, 35–49.PubMedCrossRefGoogle Scholar
  49. Lubar, J. F. (1991). Discourse on the development of EEG diagnostics and biofeedback for attention-deficit/hyperactivity disorders. Biofeedback and Self-regulation, 16, 201–225.PubMedCrossRefGoogle Scholar
  50. Lubar, J. F., & Bahler, W.W. (1976). Behavioral management of epileptic seizures following EEG biofeedback training of the sensorimotor rhythm. Biofeedback and Self-regulation, 1, 77–104.PubMedCrossRefGoogle Scholar
  51. Lubar, J. F., Bianchini, K. J., Calhoun, W. H., Lambert, E. W., Brody, Z. H., & Shabsin, H. S. (1985). Spectral analysis of EEG differences between children with and without learning disabilities. Journal of Learning Disabilities, 18, 403–408.PubMedCrossRefGoogle Scholar
  52. Lubar, J. F., & Lubar, J. O. (1999). Neurofeedback assessment and treatment for Attention Deficit/Hyperactivity Disorders. In J. R. Evans & A. Abarbanel (Eds.), Introduction to quantitative EEG and neurofeedback (pp 103–146). New York: Academic Press.Google Scholar
  53. Lubar, J. F., Startwood, M. O., Startwood, J. N., & O’Donnell, P. H. (1995a). Evaluation of the effectiveness of EEG neurofeedback training for ADHD in a clinical setting as measured by changes in TOVA scores, behavioral ratings, and WISC-R performance. Biofeedback and Self-regulation, 20, 83–99.PubMedCrossRefGoogle Scholar
  54. Lubar, J. .F., Swartwood, M. O., Swartwood, J. N., & O’Donell, P. H. (1995b). Neurofeedback for the management of Attention Deficit/Hyperactivity Disorders. In M.S. Schwartz (Ed.), Biofeedback: A practitioner’s Guide (pp. 493–522). New York: Guilford Press.Google Scholar
  55. Matousek, M., & Petersén, I. (1973). Frequency analysis of the EEG in normal children and adolescents. In P. Kellaway & I. Petersén (Eds.), Automation of clinical electroencephalography (pp. 75–102). New York: Raven Press.Google Scholar
  56. Mazziotta, J. C., Toga, A., Evans, A. C., Fox, P., & Lancaster, J. (1995). A probabilistic atlas of the human brain: theory and rationale for its development. NeuroImage, 2, 89–101.PubMedCrossRefGoogle Scholar
  57. Monastra, V. J., Lynn, S., Linden, M., Lubar, J. F., Gruzelier, J., & La Vaque, T. J. (2005). Electroencephalographic biofeedback in the treatment of Attention-Deficit/Hyperactivity Disorder. Applied Psychophysiology and Biofeedback, 30, 95–114.PubMedCrossRefGoogle Scholar
  58. Monastra, V. J., Monastra, D. M., & George, S. (2002). The effects of stimulant therapy, EEG biofeedback and parenting style on the primary symptoms of Attention-Deficit/Hyperactivity Disorder. Applied Psychophysiology and Biofeedback, 27, 231–249.PubMedCrossRefGoogle Scholar
  59. Moore, N. C. (2000). A review of EEG biofeedback for anxiety disorders. Clinical Electroencephalography, 31, 1–6.PubMedGoogle Scholar
  60. Nash, J. K. (2000). Treatment of Attention Deficit Hyperactivity Disorder with neurotheraphy. Clinical Electroencephalography, 31, 30–37.PubMedGoogle Scholar
  61. Neville, H., Coffey, S. A., Holcomb, P., Tallal, P. (1993). The neurobiology of sensory and language processing in language-impaired children. Journal of Cognitive Neuroscience, 5, 235–253.CrossRefGoogle Scholar
  62. Nunez, P. L. (1995). Toward a physics of neocortex. In P.L. Nunez (Ed.), Neocortical dynamics and Human EEG rhythms. New York: Oxford University Press.Google Scholar
  63. Penberthy, J. K., Cox, D., Breton, M., Robeva, R., Kalbfleisch, M. L., Loboschefski, T., & Kovatchev, B. (2005). Calibration of ADHD assessments across studies: a meta-analysis tool. Applied Psychophysiology and Biofeedback, 30, 31–51.PubMedCrossRefGoogle Scholar
  64. Peniston, E. G., & Kulkosky, P. J. (1999). Neurofeedback in the treatment of addictive disorders. In J. R. Evans & A. Abarbanel (Eds.), Introduction to quantitative EEG and neurofeedback (pp 157–180). New York: Academic Press.Google Scholar
  65. Ponsford, J. L., & Kinsella, G. (1998). Evaluation of a remedial program for attentional deficits following closed-head injury. Journal of Clinical Experimental Neurophysiology, 10, 693–708.Google Scholar
  66. Pop-Jordanova, N., Markovska-Simoska, S., & Zorcec, T. (2005). Neurofeedback treatment of children with attention deficit hyperactivity disorder. Prilozi, 26, 71–80.PubMedGoogle Scholar
  67. Posner, M. I., Sheese, B. E., Odludas, Y., & Tang, Y. (2006). Analyzing and shaping human attentional networks. Neural Networks, 19, 1422–1429.PubMedCrossRefGoogle Scholar
  68. Riera, J., Fuentes, M. E., Aubert, E., & Díaz, D. (1997). Solving the forward problem: Spherical vs. realistic electric lead field. Biomedizinische Technik, 42, 223–226.Google Scholar
  69. Rosenfeld, J. P. (2000). An EEG biofeedback protocol for affective disorders. Clinical Electroencephalography, 31, 7–12.PubMedGoogle Scholar
  70. Rossiter, T. R., & La Vaque, T. J. (1995). A comparison of EEG biofeedback and psychostimulants in treating Attention Deficit/Hyperactivity Disorders. Journal of Neurotherapy, 3, 48–59.CrossRefGoogle Scholar
  71. Rossiter, T. (2004a). The effectiveness of Neurofeedback and stimulant drugs in treating AD/HD: Part I. Review of methodological issues. Applied Psychophysiology and Biofeedback, 29, 95–112.PubMedCrossRefGoogle Scholar
  72. Rossiter, T. (2004b). The effectiveness of Neurofeedback and stimulant drugs in treating AD/HD: Part II. Replication. Applied Psychophysiology and Biofeedback, 29, 233–243.PubMedCrossRefGoogle Scholar
  73. Rubenstein, J. L., & Merzenich, M. M. (2003). Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes, Brain and Behavior, 2, 255–267.CrossRefGoogle Scholar
  74. Schatz, A. M., Ballantyne, A. O., & Trauner, D. A. (2001). Sensitivity and specificity of a computerized test of attention in the diagnosis of Attention-Deficit/Hyperactivity Disorder. Assessment, 8, 357–365.PubMedCrossRefGoogle Scholar
  75. Scherg, M., & Von Cramon, D. (1985). Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. Electroencephalography and Clinical Neurophysiology, 62, 32–44.PubMedCrossRefGoogle Scholar
  76. Seifert, A. R., & Lubar, J. F. (1975). Reduction of epileptic seizures through EEG biofeedback training. Biological Psychology, 3, 157–184.PubMedCrossRefGoogle Scholar
  77. Silva-Pereyra, J., Rivera-Gaxiola, M., Fernández, T., Díaz-Comas, L., Harmony, T., Fernández-Bouzas, A., Rodríguez, M., Bernal, J., & Marosi, E. (2003). Are poor readers semantically challenged? An event-related brain potential assessment. International Journal of Psychophysiology, 49, 187–199.PubMedCrossRefGoogle Scholar
  78. Stamatina, S., & Lubar, J. F. (2004). EEG changes in traumatic brain injured patients after cognitive rehabilitation. Journal of Neurotherapy, 8, 21–51.CrossRefGoogle Scholar
  79. Steriade, M., Gloor, P., Llinás, R. R., Lopes da Silva, F. H., & Mesulam, M. M. (1990). Basic mechanisms of cerebral rhythmic activities. Electroencephalography and Clinical Neurophysiology, 76, 481–508.PubMedCrossRefGoogle Scholar
  80. Sterman, M. B. (1996). Physiological origins and functional correlates of EEG rhythmic activities: implications for self-regulation. Biofeedback and Self-regulation, 21, 3–33.PubMedCrossRefGoogle Scholar
  81. Sterman, M. B. (2000). Basic concepts and clinical findings in the treatment of seizure disorders with EEG operant conditioning. Clinical Electroencephalography, 31, 45–55.PubMedGoogle Scholar
  82. Sterman, M. B., & Egner T. (2006). Foundation and practice of neurofeedback for the treatment of epilepsy. Applied Psychophysiology and Biofeedback,, 31, 21–35.PubMedCrossRefGoogle Scholar
  83. Sterman, M. B., & Friar, L. (1972). Suppression of seizures in an epileptic following sensorimotor EEG feedback training. Electroencephalography and Clinical Neurophysiology, 33, 89–95.PubMedCrossRefGoogle Scholar
  84. Stevenson, H. W., & Wright, J. C. (1966). Child psychology. In J. B. Sidowski (Ed.), Experimental methods and instrumentation in Psychology (pp. 577–605). New York: McGraw Hill.Google Scholar
  85. Tansey, M. A. (1991). Wechsler (WISC-R) changes following treatment of learning disabilities via EEG biofeedback training in a private practice setting. Australian Journal of Psychology, 43, 147–153.CrossRefGoogle Scholar
  86. Tansey, M. A. (1993). Ten-year stability of EEG biofeedback results for a hyperactive boy who failed fourth grade perceptually impaired class. Biofeedback and Self-regulation, 18, 33–44.PubMedCrossRefGoogle Scholar
  87. Thatcher, R. W., Krause, P .J., & Hrybyk, M. (1986). Cortico-cortical associations and EEG coherence: A two-compartmental model. Electroencephalography and Clinical Neurophysiology, 64, 123–143.PubMedCrossRefGoogle Scholar
  88. The World Medical Association Declaration of Helsinki. (2004). Ethical Principles for medical research involving human subjects. Note or clarification on paragraph 30 added by the WMA General Assembly, Tokio.Google Scholar
  89. Thompson, L., & Thompson, M. (1998). Neurofeedback combined with training in metacognitive strategies: effectiveness in students with ADD. Applied Psychophysiology and Biofeedback, 23, 243–263.PubMedCrossRefGoogle Scholar
  90. Tinius, T. P., & Tinius, K. A. (2000). Changes after EEG biofeedback and cognitive retraining in adults with mild traumatic brain injury and Attention Deficit Hyperactivity Disorder. Journal of Neurotherapy, 4, 27–44.CrossRefGoogle Scholar
  91. Trudeau, D. L. (2000). The treatment of addictive disorders by brain wave biofeedback: A review and suggestions for future research. Clinical Electroencephalography, 31, 13–22.PubMedGoogle Scholar
  92. Valdés, P., Biscay, R., Galán, L., Bosch, J., Zsava, S., & Virués, T. (1990). High resolution spectral EEG norms topography. Brain Topography, 3, 281–282.Google Scholar
  93. Valdés, P., Bosch, J., Grave, R., Hernández, J., Riera, J., Pascual, R., & Biscay, R. (1992). Frequency domain models of the EEG. Brain Topography, 4, 309–319.PubMedCrossRefGoogle Scholar
  94. Valdés, P., Riera, J., & Casanova, R. (1996). Spatiotemporal distributed inverse solutions. In C. Wood (Ed.), Proceedings of the Tenth International Conference on Biomagnetism BIOMAG’96, Santa Fe NM.Google Scholar
  95. Vernon, D., Frick, A., & Gruzelier, J. (2004). Neurofeedback as a treatment for ADHD: A methodological review with implications for future research. Journal of Neurotherapy, 8, 53–82.CrossRefGoogle Scholar
  96. Walker, J. E., & Kozlowski, G. P. (2005). Neurofeedback treatment of epilepsy. Child and Adolescent psychiatric clinics of North America, 14, 163–176.PubMedCrossRefGoogle Scholar
  97. Wechsler, D. (1981). Manual WISC-R Español. Escala de Inteligencia Revisada para el nivel escolar. México, D.F.: Manual Moderno.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Thalía Fernández
    • 1
  • Thalía Harmony
    • 1
  • Antonio Fernández-Bouzas
    • 1
  • Lourdes Díaz-Comas
    • 2
  • Roberto A. Prado-Alcalá
    • 1
  • Pedro Valdés-Sosa
    • 2
  • Gloria Otero
    • 3
  • Jorge Bosch
    • 2
  • Lídice Galán
    • 2
  • Efraín Santiago-Rodríguez
    • 1
  • Eduardo Aubert
    • 2
  • Fabiola García-Martínez
    • 1
  1. 1.Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus UNAM-UAQ Universidad Nacional Autónoma de MéxicoJuriquillaMexico
  2. 2.Centro de Neurociencias de CubaHavanaCuba
  3. 3.Facultad de Medicina Laboratorio de PsicofisiologíaUniversidad Autónoma del Estado de MéxicoTolucaMexico

Personalised recommendations