Applied Psychophysiology and Biofeedback

, Volume 32, Issue 2, pp 99–109 | Cite as

Targeting pCO2 in Asthma: Pilot Evaluation of a Capnometry-Assisted Breathing Training

Original Paper

Abstract

Objectives

This pilot study aimed to evaluate the feasibility and potential benefits of a novel biofeedback breathing training for achieving sustained increases in pCO2 levels.

Methods

Twelve asthma patients were randomly assigned to an immediate 4-week treatment group or waiting list control. Patients were instructed to modify their respiration in order to change levels of end-tidal pCO2 using a hand-held capnometer. Treatment outcome was assessed in frequency and distress of symptoms, asthma control, lung function, and variability of peak expiratory flow (PEF).

Results

We found stable increases in pCO2 and reductions in respiration rate during treatment and 2-month follow-up. Mean pCO2 levels rose from a hypocapnic to a normocapnic range at follow-up. Frequency and distress of symptoms was reduced and reported asthma control increased. In addition, mean PEF variability decreased significantly in the treatment group.

Conclusions

Our pilot intervention provided evidence for the feasibility of pCO2-biofeedback training in asthma patients.

Keywords

Asthma Hypocapnia Breathing training pCO2 Biofeedback 

Abbreviations

pCO2

Maximum partial pressure of CO2

fR

Respiration rate per minute

FEV1

Forced expiratory volume in the first second

FVC

Forced vital capacity

Rint

Interrupter resistance

PEF

Peak expiratory flow

References

  1. Abelson, J. L., Weg, J. G., Nesse, R. M., et al. (2001). Persistent respiratory irregularity in patients with panic disorder. Biological Psychiatry, 49, 588–595.PubMedCrossRefGoogle Scholar
  2. Berg, J., Dunbar-Jacob, J., & Rohay, J. M. (1998). Compliance with inhaled medications: the relationship between diary and electronic monitor. Annals of Behavioral Medicine, 20, 36–38.PubMedCrossRefGoogle Scholar
  3. Bernardi, L., Porta, C., Spicuzza, L., et al. (2002). Slow breathing increases arterial baroreflex sensitivity in patients with chronic heart failure. Circulation, 15(105), 143–145.CrossRefGoogle Scholar
  4. Bernardi, L., Spadacini, G., Bellwon, J., et al. (1998). Effect of breathing rate on oxygen saturation and exercise performance in chronic heart failure. Lancet, 351, 1308–1311.PubMedCrossRefGoogle Scholar
  5. Bowler, S. D., Green, A. G., & Mitchell, C. A. (1998). Buteyko breathing techniques in asthma: A blinded randomised controlled trial. Medical Journal of Australia, 169, 575–578.PubMedGoogle Scholar
  6. Bruton, A., & Holgate, S. T. (2005). Hypocapnia and asthma: a mechanism for breathing retraining? Chest, 127, 1808–1811.PubMedCrossRefGoogle Scholar
  7. Carr, R. E. (1998). Panic disorder and asthma: causes, effects and research implications. Journal of Psychosomatic Research, 44, 43–52.PubMedCrossRefGoogle Scholar
  8. Chowienczyk, P. J., Parkin, D. H., Lawson, C. P., et al. (1994). Do asthmatic patients correctly record home spirometry measurements? BMJ, 309, 1618.PubMedGoogle Scholar
  9. Clarke, P. S., & Gibson, J. R. (1980). Asthma hyperventilation and emotion. Aust Fam Physician, 9, 715–9.PubMedGoogle Scholar
  10. Cooper, S., Oborne, J., Newton, S., et al. (2003). Effects of two breathing exercises (buteyko and pranayama) in asthma: A randomized controlled trial. Thorax, 58, 674–679. PubMedCrossRefGoogle Scholar
  11. Davis, M. S., & Freed, A. N. (2001). Repeated hyperventilation causes peripheral airways inflammation, hyperreactivity, and impaired bronchodilation in dogs. American Journal of Respiratory and Critical Care Medicine, 164, 785–789.PubMedGoogle Scholar
  12. Davis, M. S., Schofield, B., & Freed, A. N. (2003). Repeated peripheral airway hyperpnea causes inflammation and remodeling in dogs. Medicine and Science in Sports and Exercise, 35, 608–616.PubMedCrossRefGoogle Scholar
  13. Douma, W. R., Kerstjens, H. A., Roos, C. M., et al. (2000). Changes in peak expiratory flow indices as a proxy for changes in bronchial hyperresponsiveness. Dutch Chronic Non-Specific Lung Disease study group. European Respiratory Journal, 16, 220–225.PubMedCrossRefGoogle Scholar
  14. Ernst, E. (2000). Breathing techniques—adjunctive treatment modalities for asthma? A systematic review. European Respiratory Journal, 15, 969–972.PubMedCrossRefGoogle Scholar
  15. Fish, J. E., Ankin, M. G., Kelly, J. F., et al. (1981). Regulation of bronchomotor tone by lung inflation in asthmatic and nonasthmatic subjects. Journal of Applied Physiology, 50, 1079–1086.PubMedGoogle Scholar
  16. Folgering H. T. M., Lenders J., & Rosier I. (1980). Biofeedback control of Paco2, a prospective therapy in hyperventilation. Progress in respiratory research, vol. 14, Asthma. In: H. Herzog et al. (Eds.), Karger, Basel, pp.26–30.Google Scholar
  17. Fujimori, K., Satoh, M., & Arakawa, M. (1996). Ventilatory response to continuous incremental changes in respiratory resistance in patients with mild asthma. Chest, 109, 1525–1531.PubMedGoogle Scholar
  18. Giardino, N. D., Chan, L., & Borson, S. (2004). Combined heart rate variability and pulse oximetry biofeedback for chronic obstructive pulmonary disease: preliminary findings. Applied Psychophysiology and Biofeedback 29, 121–133.PubMedCrossRefGoogle Scholar
  19. Hasler, G., Gergen, P. J., Kleinbaum, D. G., Ajdacic, V., et al. (2005). Asthma and panic in young adults. A twenty year prospective community study. American Journal of Respiratory and Critical Care Medicine, 171, 1224–30.PubMedCrossRefGoogle Scholar
  20. Herxheimer, H. (1946). Hyperventilation asthma. Lancet, 1, 83–87.CrossRefGoogle Scholar
  21. Holloway, E., & Ram, F. S. (2004). Breathing exercises for asthma. Cochrane Database Syst Rev (1):CD001277.Google Scholar
  22. Hormbrey, J., Jacobi, M. S., Patil, C. P., & Saunders, K. B. (1988). CO2 response and pattern of breathing in patients with symptomatic hyperventilation, compared to asthmatic and normal subjects. European Respiratory Journal, 1, 846–851.PubMedGoogle Scholar
  23. Hyland, M. E., Kenyon, C. A. P., Taylor, M., et al. (1993). Steroid prescribing for asthmatics: Relationship with Asthma Symptom Checklist and Living with Asthma Questionnaire. British Journal of Clinical Psychology, 32, 505–511.PubMedGoogle Scholar
  24. Joseph, C. N., Porta, C., Casucci, G., Casiraghi, N., Maffeis, M., Rossi, M., & Bernardi, L. (2005). Slow breathing improves arterial baroreflex sensitivity and decreases blood pressure in essential hypertension. Hypertension, 46, 714–718.PubMedCrossRefGoogle Scholar
  25. Juniper, E. F., O’Byrne, P. M., Guyatt, G. H., et al. (1999). Development and validation of a questionnaire to measure asthma control. European Respiratory Journal, 14, 902–907.PubMedCrossRefGoogle Scholar
  26. Kelsen, S. G., Fleegler, B., & Altose, M. D. (1979). The respiratory neuromuscular response to hypoxia, hypercapnia, and obstruction to airflow in asthma. American Review of Respiratory Disease, 120, 517–527.PubMedGoogle Scholar
  27. Kinsman, R. A., Spector, S., Shucard, D. W., et al. (1974). Observations on patterns of subjective symptomatology of acute asthma. Psychosomatic Medicine, 36, 129–143.PubMedGoogle Scholar
  28. Lehrer, P. M., Vaschillo, E., Vaschillo, B., et al. (2004). Biofeedback treatment for asthma. Chest, 126, 352–61.PubMedCrossRefGoogle Scholar
  29. Lutchen, K. R., Jensen, A., Atileh, H., et al. (2001). Airway constriction pattern is a central component of asthma severity: the role of deep inspirations. American Journal of Respiratory and Critical Care Medicine, 164, 207–215.PubMedGoogle Scholar
  30. McFadden, E. R. Jr, & Gilbert, I. A. (1994). Exercise-induced asthma. New England Journal of Medicine, 330, 1362–1367.PubMedCrossRefGoogle Scholar
  31. McFadden, E. R. Jr, & Lyons, H. A. (1968). Arterial-blood gas tension in asthma. New England Journal of Medicine, 278, 1027–1032.PubMedCrossRefGoogle Scholar
  32. McHugh, P., Aitcheson, F., & Duncan, B., et al. (2003). Buteyko Breathing Technique for asthma: an effective intervention. New Zealand Medical Journal, 116, U710.PubMedGoogle Scholar
  33. Meuret, A. E., Wilhelm, F. H., Ritz, T. et al. Feedback of end-tidal pCO 2 as a therapeutic approach for panic disorder. Submitted.Google Scholar
  34. Meuret, A. E., Wilhelm, F. H., & Roth, W. T. (2001). Respiratory biofeedback-assisted therapy in panic disorder. Behavior Modification, 25, 584–605.PubMedCrossRefGoogle Scholar
  35. Meuret, A. E., Wilhelm, F. H., & Roth, W. T. (2004). Respiratory feedback for treating panic disorder. Journal of Clinical Psychology, 60, 197–207.PubMedCrossRefGoogle Scholar
  36. Milgrom, H., Wamboldt, F., & Bender, B. (2002). Monitoring adherence to the therapy of asthma. Current Opinion in Allergy and Clinical Immunology, 2, 201–205.PubMedCrossRefGoogle Scholar
  37. National Heart Lung and Blood Institute. Expert panel report: Guidelines for the diagnosis and management of asthma. Update on selected topics 2002. NIH publication #02–5074. National Institutes of Health, Bethesda, MD 2003.Google Scholar
  38. Newhouse, M. T., Becklake, M. R., Macklem, P. T., et al. (1964). Effect of alterations in end-tidal CO2 tension on flow resistance. Journal of Applied Physiology, 19, 745–749.PubMedGoogle Scholar
  39. Opat, A. J., Cohen, M. M., & Bailey, M. J., et al. (2000). A clinical trial of the buteyko breathing technique in asthma as taught by video. Journal of Asthma, 37, 557–564.PubMedGoogle Scholar
  40. Osborne, C. A., O’Connor, B. J., Lewis, A., et al. (2000). Hyperventilation and asymptomatic chronic asthma. Thorax, 55, 1016–1022.PubMedCrossRefGoogle Scholar
  41. Reddel, H., Jenkins, C., & Woolcock, A. (1999). Diurnal variability-time to change asthma guidelines? BMJ, 319, 45–7.PubMedGoogle Scholar
  42. Reddel, H. K., Salome, C. M., Peat, J. K., et al. (1995). Which index of peak expiratory flow is most useful in the management of stable asthma? American Journal of Respiratory and Critical Care Medicine, 151, 1320–1325.PubMedGoogle Scholar
  43. Ritz, T., Bobb, C., Edwards, M., et al. (2001). The structure of symptom report in asthma. A re-evaluation. Journal of Psychosomatic Research, 51, 639–645.PubMedCrossRefGoogle Scholar
  44. Ritz, T., Dahme, B., DuBois, A. B., et al. (2002). Guidelines for mechanical lung function measurements in psychophysiology. Psychophysiology, 39, 546–567.PubMedCrossRefGoogle Scholar
  45. Ritz, T., Dahme, B., & Wagner, C. (1998). Effects of static forehead and forearm muscle tension on total respiratory resistance in healthy and asthmatic participants. Psychophysiology, 35, 549–562.PubMedCrossRefGoogle Scholar
  46. Ritz, T., Meuret, A. E., Wilhelm, F., & Roth, W. T. (2003). End-tidal PCO2 levels in asthma patients in the laboratory and at home. Biological Psychology, 2, 233–234 (abstract).Google Scholar
  47. Ritz, T., & Roth, W. T. (2003). Behavioral interventions in asthma: Breathing training. Behavior Modification, 27, 710–730.PubMedCrossRefGoogle Scholar
  48. Ritz, T., & Steptoe, A. (2000). Emotion and pulmonary function in asthma: Reactivity in the field and relationship with laboratory induction of emotion. Psychosomatic Medicine, 62, 808–815.PubMedGoogle Scholar
  49. Ritz, T., Thöns, M., Fahrenkrug, S., et al. (2005). Airways, respiration, and respiratory sinus arrhythmia during picture viewing. Psychophysiology, 42, 568–78.PubMedGoogle Scholar
  50. Schein, M. H., Gavish, B., Herz, M., et al. (2001). Treating hypertension with a device that slows and regularises breathing: a randomised, double-blind controlled study. Journal of Human Hypertension, 15, 271–278.PubMedCrossRefGoogle Scholar
  51. Stalmatski, A. (1997). Freedom from asthma. Buteyko’s revolutionary treatment. London: Kyle Cathie.Google Scholar
  52. Steen, N., Hutchinson, A., McColl, E., et al. (1994). Development of a symptom based outcome measure for asthma. BMJ 309, 1065–1068.PubMedGoogle Scholar
  53. Sterling, G. M. (1968). The mechanism of bronchoconstriction due to hypocapnia in man. Clinical Science, 34, 277–285.PubMedGoogle Scholar
  54. Thomas, M., McKinley, R. K., Freeman, E., et al. (2003). Breathing retraining for dysfunctional breathing in asthma: a randomized controlled trial. Thorax, 58, 110–5.PubMedCrossRefGoogle Scholar
  55. van den Elshout, F. J. J., van Herwaarden, C. L. A., & Folgering, H. T. M. (1991). Effects of hypercapnia and hypocapnia on respiratory resistance in normal and asthmatic subjects. Thorax, 46, 28–32.PubMedCrossRefGoogle Scholar
  56. van Doorn, P., Folgering, H. T. M., & Colla, P. (1982). Control of the end-tidal pCO2 in the hyperventilation syndrome: effects of biofeedback and breathing instructions compared. Bulletin of European Physiopathol and Respiration, 18, 829–36.Google Scholar
  57. Varray, A., & Prefaut, C. (1992). Importance of physical exercise training in asthmatics. Journal of Asthma 29, 229–234.PubMedGoogle Scholar
  58. Wagner, P. D., Hedenstierna, G., & Rodriguez-Roisin, R. (1996). Gas exchange, expiratory flow obstruction and the clinical spectrum of asthma. European Respiratory Journal, 9, 1278–1282.PubMedCrossRefGoogle Scholar
  59. Walters, E. H., & Johns, D. P. (2001). Unravelling the Buteyko effect. Medical Journal of Australia, 174, 64–65.PubMedGoogle Scholar
  60. Ware, J. E., Kosinski, M., & Keller, S. D. (1996). A 12-Item Short-Form Health Survey: Construction of Scales and Preliminary Tests of Reliability and Validity. Medical Care, 34, 220–233.PubMedCrossRefGoogle Scholar
  61. Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: the PANAS scales. Journal of Personality and Social Psychology, 54, 1063–1070. PubMedCrossRefGoogle Scholar
  62. Wilhelm, F. H., Alpers, G. W., Meuret, A. E., et al. (2001a). Respiratory pathophysiology of clinical anxiety outside the laboratory: Assessment of end-tidal pCO2, respiratory pattern variability, and transfer function RSA. In: J. Fahrenberg (Ed.), Progress in ambulatory assessment (pp. 313–343). Göttingen: Hogrefe & Huber.Google Scholar
  63. Wilhelm, F. H., Gerlach, A. L., & Roth, W. T. (2001b). Slow recovery from voluntary hyperventilation in panic disorder. Psychosomatic Medicine, 63, 638–649.PubMedGoogle Scholar
  64. Wright, R. J. (2004). Alternative modalities for asthma that reduce stress and modify mood states: evidence for underlying psychobiologic mechanisms. Annals of Allergy Asthma & Immunology, 93(2 Suppl 1), S18–23.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of PsychologySouthern Methodist UniversityDallasUSA
  2. 2.University of BaselBaselSwitzerland
  3. 3.Stanford University Medical SchoolStanfordUSA
  4. 4.VA Palo Alto Health Care SystemPalo AltoUSA

Personalised recommendations