Applied Psychophysiology and Biofeedback

, Volume 31, Issue 3, pp 253–261 | Cite as

Evaluation of a Respiratory Muscle Biofeedback Procedure–Effects on Heart Rate and Dyspnea

  • Thomas RitzEmail author
  • Andreas von Leupoldt
  • Bernhard Dahme

Patients with respiratory diseases or anxiety frequently complain about dyspnea, which may be partly related to chronic tension of respiratory muscles and/or dynamic hyperinflation. In two experiments we tested a biofeedback technique that recorded electromyographic (EMG) activity from a bipolar surface electrode placement over the right external intercostal muscles with visual signal feedback. Healthy participants were tested in their ability to alter the signal. Heart rate was measured continuously throughout training trials. In the second experiment, dyspnea was rated on a modified Borg scale after each trial. Participants were able to increase their EMG activity considerably while heart rate and dyspnea increased substantially. Changes in EMG activity were achieved mostly by manipulating accessory muscle tension and/or altering breathing pattern. Thus, the technique is capable of altering respiratory muscle tension and associated dyspnea. Further studies may test the procedure as a relaxation technique in patients with respiratory disease or anxiety.


respiration respiratory muscles electromyogram dyspnea heart rate 



The authors want to thank Nicole Wedell for helping with the data reduction procedures.


  1. American Thoracic Society. (1999). Dyspnea: Mechanisms, assessment, and management: A consensus statement. American Journal of Respiratory and Critical Care Medicine, 159, 321–340.Google Scholar
  2. Anderson, B., & Ley, R. (2001). Dyspnea during panic attacks. An internet survey of incidences of changes in breathing. Behavior Modification, 25, 546–554.PubMedGoogle Scholar
  3. Banzett, R. B., Dempsey, J. A., O’Donnell, D. E., & Wamboldt, M. Z. (2000). Symptom perception and respiratory sensation in asthma. American Journal of Respiratory and Critical Care Medicine, 162, 1178–1182.Google Scholar
  4. Bass, C. (1997). Hyperventilation syndrome: A chimera? Journal of Psychosomatic Research, 42, 421–426.PubMedCrossRefGoogle Scholar
  5. Binks, A. P., Moosavi, S. H., Banzett, R. B., & Schwartzstein, R. M. (2002). “Tightness” sensation of asthma does not arise from the work of breathing. American Journal of Respiratory and Critical Care Medicine, 165, 78–82.Google Scholar
  6. Boiten, F. (1996). Autonomic response patterns during voluntary facial action. Psychophysiology, 33, 123–131.PubMedGoogle Scholar
  7. Borg, G. (1998). Borg’s Perceived Exertion and Pain Scales. Champaign, IL: Human Kinetics Publishers.Google Scholar
  8. Dahme, B., Maß, R., & Richter, R. (2001). Physiologische Grundlagen und Methoden der Respiratorischen Psychophysiologie. In F. Rösler (Ed.), Grundlagen und Meßmethoden der Psychophysiologie, Bd. 1. Enzyklopädie der Psychologie, Serie: Biologische Psychologie, Bereich Psychophysiologie, (pp. 485–549). Göttingen: Hogrefe.Google Scholar
  9. Daly, M. D. (1986). Interactions between respiration and circulation. In N. S. Cherniack, J. G. Widdicombe (Eds.), Handbook of Physiology, Section 3. The Respiratory System. Vol II, Control of breathing, Part 2, (pp. 529-594). Bethesda, MA: American Physiological Society.Google Scholar
  10. Decramer, M. (1997). Hyperinflation and respiratory muscle interaction. European Respiratory Journal, 10, 934–941.PubMedGoogle Scholar
  11. De Peuter, S., Van Diest, I., Lemaigre, V., Verleden, G., Demedts, M., & Van den Bergh, O. (2004). Dyspnea: The role of psychological processes. Clinical Psychology Review, 24, 557–581.PubMedCrossRefGoogle Scholar
  12. Fokkema, D. S. (1999). The psychobiology of strained breathing and its cardiovascular implications: A functional system review. Psychophysiology, 36, 164–175.PubMedCrossRefGoogle Scholar
  13. Freedman, S. (1992) Exercise as a bronchodilator. Clinical Science (London), 83, 383–389.Google Scholar
  14. Fridlund, A. J., & Cacioppo, J. T. (1986). Guidelines for human electromyographic research. Psychophysiology, 23, 567–589.PubMedGoogle Scholar
  15. Gibson, G. J. (1996). Pulmonary hyperinflation a clinical overview. European Respiratory Journal, 9, 2640–2649.PubMedCrossRefGoogle Scholar
  16. Global Initiative for Asthma/National Heart, Lung, and Blood Institute (2005). Global strategy for asthma management and prevention. NIH Publication 02-3659 Updated 2005. Bethesda, MA: National Institutes of Health.Google Scholar
  17. Grassino, A., Gross, D., Macklem, P. T., Roussos, C., & Zagelbaum, G. (1979). Inspiratory muscle fatigue as a factor limiting exercise. Bulletin Europeen de Physiopathologie Respiratoire, 15, 105–115.PubMedGoogle Scholar
  18. Grossman, P. (1983). Respiration, stress, and cardiovascular function. Psychophysiology, 20, 284–300.PubMedGoogle Scholar
  19. Harver, A., Mahler, D. A., Schwartzstein, R. M., & Baird, J. C. (2000). Descriptors of breathlessness in healthy individuals: Distinct and separable constructs. Chest, 118, 679–690.PubMedCrossRefGoogle Scholar
  20. Hoes, M. J., Colla, P., van Doorn, P., Folgering, H., & de Swart, J. (1987). Hyperventilation and panic attacks. The Journal of Clinical Psychiatry, 48, 435–437.PubMedGoogle Scholar
  21. Howell, J. B. L. (1997). The hyperventilation syndrome: A syndrome under threat? Thorax, 52, 30–34.CrossRefGoogle Scholar
  22. Kaufman, M. P., Rybicki, K. J., & Mitchell, J. H. (1985). Hindlimb muscular contraction reflexly decreases total pulmonary resistance in dogs. Journal of Applied Physiology, 59, 1521–1526.PubMedGoogle Scholar
  23. Killian, K. J., Gandevia, S. C., Summers, E., & Campbell, E. J. (1984). Effect of increased lung volume on perception of breathlessness, effort, and tension. Journal of Applied Physiology, 57, 686–691.PubMedGoogle Scholar
  24. Lansing, R. W., Im, B. S., Thwing, J. I., Legedza, A. T., & Banzett, R. B. (2000). The perception of respiratory work and effort can be independent of the perception of air hunger. American Journal of Respiratory and Critical Care Medicine, 162, 1690–1696.Google Scholar
  25. Lynch, P., Bakal, D. A., Whitelaw, W., & Fung, T. (1991). Chest muscle activity and panic anxiety: A preliminary investigation. Psychosomatic Medicine, 53, 80–89.PubMedGoogle Scholar
  26. Manning, H. L., & Schwartzstein, R. M. (2001). Respiratory sensations in asthma: Physiological and clinical implications. Journal of Asthma, 38, 447–460.PubMedCrossRefGoogle Scholar
  27. Martin, J., Powell, E., Shore, S., Emrich, J., & Engel, L. A. (1980). The role of respiratory muscles in the hyperinflation of bronchial asthma. American Review of Respiratory Disease, 121, 441–447.PubMedGoogle Scholar
  28. Meuret, A. E., White, K. S., Ritz, T., Roth, W. T., Hofmann, S. G., & Brown, T. A. (2005). Panic attack symptom dimensions and their relationship to illness characteristics in panic disorder. Journal of Psychiatric Research, Nov 14; [Epub ahead of print].Google Scholar
  29. Moy, M. L., Woodrow Weiss, J., Sparrow, D., Israel, E., & Schwartzstein, R. M. (2000). Quality of dyspnea in bronchoconstriction differs from external resistive loads. American Journal of Respiratory and Critical Care Medicine, 162, 451–455.Google Scholar
  30. Palecek, F. (2001). Hyperinflation: Control of functional residual lung capacity. Physiological Research, 50, 221–230.PubMedGoogle Scholar
  31. Peper, E., & Tibbetts, V. (1992). Fifteen-month follow-up with asthmatics utilizing EMG/incentive inspirometer feedback. Biofeedback and Self Regulation, 17, 143–151.PubMedCrossRefGoogle Scholar
  32. Perna, G., Caldirola, D., Namia, C., Cucchi, M., Vanni, G., & Bellodi, L. (2004). Language of dyspnea in panic disorder. Depression and Anxiety, 20, 32–38.PubMedCrossRefGoogle Scholar
  33. Ritz, T., Dahme, B., DuBois, A. B., Folgering, H., Fritz, G. K., Harver A. R., Kotses, H., Lehrer, P. M., Ring, C., Steptoe, A., & Van de Woestijne, K. P. (2002). Guidelines for mechanical lung function measurements in psychophysiology. Psychophysiology, 39, 546–567.PubMedCrossRefGoogle Scholar
  34. Ritz, T., Dahme, B., & Wagner, C. (1998). Effects of static forehead and forearm muscle tension on total respiratory resistance in healthy and asthmatic participants. Psychophysiology, 35, 549–562.PubMedCrossRefGoogle Scholar
  35. Stark-Leyva, K. N., Beck, K. C., & Johnson, B. D. (2004). Influence of expiratory loading and hyperinflation on cardiac output during exercise. Journal of Applied Physiology, 96, 1920–1927.PubMedCrossRefGoogle Scholar
  36. von Leupoldt, A., & Dahme, B. (2005). Differentiation between the sensory and affective dimension of dyspnea during resistive load breathing in normal subjects. Chest, 128, 3345–3349.PubMedCrossRefGoogle Scholar
  37. Wilhelm, F. H., Gevirtz, R., & Roth, W. T. (2001). Respiratory dysregulation in anxiety, functional cardiac, and pain disorders. Assessment, phenomenology, and treatment. Behavior Modification, 25, 513–545.PubMedGoogle Scholar
  38. Zechman, F. W., & Wiley, R. L. (1986). Afferent inputs to breathing: Respiratory sensation. In N. S. Cherniack, J. G. Widdicombe (Eds.), Handbook of Physiology, Section 3. The Respiratory System, vol. II, Control of breathing, Part 2, pp. 449–474. Bethesda, MA: American Physiological Society.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Thomas Ritz
    • 1
    Email author
  • Andreas von Leupoldt
    • 2
  • Bernhard Dahme
    • 2
  1. 1.Department of PsychologySouthern Methodist UniversityDallasUSA
  2. 2.Department of PsychologyUniversity of HamburgHamburgGermany

Personalised recommendations