Applied Psychophysiology and Biofeedback

, Volume 31, Issue 2, pp 129–142 | Cite as

Characteristics of Resonance in Heart Rate Variability Stimulated by Biofeedback

  • Evgeny G. Vaschillo
  • Bronya Vaschillo
  • Paul M. Lehrer
Article

As we previously reported, resonant frequency heart rate variability biofeedback increases baroreflex gain and peak expiratory flow in healthy individuals and has positive effects in treatment of asthma patients. Biofeedback readily produces large oscillations in heart rate, blood pressure, vascular tone, and pulse amplitude via paced breathing at the specific natural resonant frequency of the cardiovascular system for each individual. This paper describes how resonance properties of the cardiovascular system mediate the effects of heart rate variability biofeedback. There is evidence that resonant oscillations can train autonomic reflexes to provide therapeutic effect. The paper is based on studies described in previous papers. Here, we discuss the origin of the resonance phenomenon, describe our procedure for determining an individual's resonant frequency, and report data from 32 adult asthma patients and 24 healthy adult subjects, showing a negative relationship between resonant frequency and height, and a lower resonant frequency in men than women, but no relationship between resonant frequency and age, weight, or presence of asthma. Resonant frequency remains constant across 10 sessions of biofeedback training. It appears to be related to blood volume.

KEY WORDS:

resonance closed loop system biofeedback heart rate variability baroreflex 

REFERENCES

  1. Angelone, A., & Coulter, N. A. Jr. (1964). Respiratory sinus arrhythmia: A frequency depended phenomenon. Journal of Applied Physiology, 19, 479–82.PubMedGoogle Scholar
  2. Chernigovskaya, N. V., Vaschillo, E. G., Rusanovsky, B. B., & Kashkarova, O. E. (1990). Instrumental autotraining of mechanisms for cardiovascular function regulation in treatment of neurotics. The SS Korsakov's Journal of Neuropathology and Psychiatry, 90, 24–28.Google Scholar
  3. Cooke, W. H., Cox, J. F., Diedrich, A. M., Taylor, J. A., Beightol, L. A., Ames, J. E. 4th, Hoag, J. B., Seidel, H., & Eckberg, D. L. (1998). Controlled breathing protocols probe human autonomic cardiovascular rhythms. American Journal of Physiology, 274(2 Pt 2), H709–18.PubMedGoogle Scholar
  4. DeBoer, R. W., Karemaker, J. M., & Strackee, J. (1987). Hemodynamic fluctuations and baroreflex sensitivity in humans: A beat-to-beat model. American Journal of Physiology, 253 (Heart and Circulatory Physiology, 22), H680–H689.PubMedGoogle Scholar
  5. Giardino, N., Lehrer, P. M., & Feldman, J. (2000). The role of oscillations in self-regulation: their contribution to homeostasis. In D. Kenney & F. J. McGuigan (Ed.), Stress and health: Research and clinical applications (pp. 27–52). Harwood Publishers.Google Scholar
  6. Giardino, H. D., Glenny, R. W., Borson, S., & Chan, L. (2003). Respiratory sinus arrhythmia is associated with efficiency of pulmonary gas exchange in healthy humans. American Journal of Physiology (Heart and Circulatory Physiology, 284), H1585–H1591.Google Scholar
  7. Giardino, N. D., Chan, L., & Borson, S. (2004). Combined heart rate variability and pulse oximetry biofeedback for chronic obstructive pulmonary disease: preliminary findings. Applied Psychophysiology and Biofeedback, 29, 121–133.PubMedCrossRefGoogle Scholar
  8. Grodins, F. S. (1963). Control theory and biological systems. New York: Columbia University Press.Google Scholar
  9. Halamek, J., Kara, T., Jurak, P., Soucek, M., Francis, D. P., Davies, L. C., Shen, W. K., Coats, A. J., Novak, M., Novakova, Z., Panovsky, R., Toman, J., Sumbera, J., & Somers, V. K. (2003). Variability of phase shift between blood pressure and heart rate fluctuations: a marker of short-term circulation control. Circulation, 22,108(3), 292–307.CrossRefGoogle Scholar
  10. Hamilton, L. L., Lindan, O., & Reswick, J. B. (1969). Dynamic effects of sinusoidal tilting on heart rate of healthy and paralyzed persons. Journal of Applied Physiology, 27(3), 378–384.PubMedGoogle Scholar
  11. Hammer, P. E., & Saul, J. P. (2005). Resonance in a mathematical model of baroreflex control: arterial blood pressure waves accompanying postural stress. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 288(6), R1637–1648.PubMedGoogle Scholar
  12. Herbs, D., Gevirtz, R. N., & Jacobs, D. (1993). The effect of heart rate pattern biofeedback for the treatment of essential hypertension. Biofeedback and Self-Regulation, 19, 281 (abstract).Google Scholar
  13. Hasset, A., Radvanski, D., & Lehrer, P. (2006). Heart rate variability biofeedback as a treatment for fibromyalgia. Paper presented at the annual meeting of the International Society for Advancement of Respiratory Psychophysiology, Princeton, NJ, October 17–19. Biological Psychology, 72, 232–233 (abstract).Google Scholar
  14. Ito, T., Takamata, A., Yaegashi, K., Itoh, T., Yoshida, T., Kawabata, T., Kimura, M., & Morimoto, T. (2001). Role of blood volume in the age-associated decline in peak oxygen uptake in humans. Japanese Journal of Physiology, 51, 607–612.PubMedCrossRefGoogle Scholar
  15. Karavidas, M. (2005). Heart variability biofeedback in the treatment of major depressive disorder. Applied Psychophysiology and Biofeedback, 30(4), 397–423.CrossRefGoogle Scholar
  16. Karavidas, M., & Lehrer, P. (2006). A pilot study of heart rate variability (HRV) Biofeedback as a treatment for major depression. Paper presented at the annual meeting of the International Society for Advancement of Respiratory Psychophysiology, Princeton, NJ, October 17–19. Biological Psychology, 72, 234–235.Google Scholar
  17. Legramante, J. M., Raimondi, G., Massaro, M., Cassarino, S., Peruzzi, G., & Iellamo, F. (1999). Investigating feed-forward neural regulation of circulation from analysis of spontaneous arterial pressure and heart rate fluctuations. Circulation, 99, 1760–1766.PubMedGoogle Scholar
  18. Lehrer, P. M., Carr, R. E., Smetankine, A., Vaschillo, E., Peper, E., Porges, S., Edelberg, R., Hamer, R., & Hochron, S. (1997). Respiratory sinus arrhythmia vs neck/trapezius EMG and incentive inspirometry biofeedback for asthma: a pilot study. Applied Psychophysiology and Biofeedback, 22, 95–109.PubMedCrossRefGoogle Scholar
  19. Lehrer, P. M., Vaschillo, E., & Vaschillo, B. (2000). Resonant frequency biofeedback training to increase cardiac variability: rationale and manual for training. Applied Psychophysiology and Biofeedback, 25, 177–191.PubMedCrossRefGoogle Scholar
  20. Lehrer, P. M., Vaschillo, E., Vaschillo, B., Lu, S. E., Eckberg, D. L., Edelberg, R., Shih, W. J., Lin, Y., Kuusela, T. A., Tahvanainen, K. U. O., & Hamer, R. (2003). Heart rate variability biofeedback increases baroreflex gain and peak expiratory flow. Psychosomatic Medicine, 65, 796–805.PubMedCrossRefGoogle Scholar
  21. Lehrer, P., Vaschillo, E., Vaschillo, B., Lu, S., Scardella, A., Siddique, M., & Habib, R. (2004). Biofeedback Treatment for Asthma. Chest, 126, 352–361.PubMedCrossRefGoogle Scholar
  22. Lindqvist, A. (1990). Noninvasive methods to study autonomic nervous control of circulation. Acta Physiologica Scandinavica Supplementum, 588, 1–107.PubMedGoogle Scholar
  23. London, G. M., Guerin, A. P., Laurent, S., London, A. M., & Safar, M. E. (1985). Cardiopulmonary blood volume and plasma renin activity in man: preliminary report. Journal of Hypertension-Supplement, 3, S121–S123.Google Scholar
  24. McCraty, R., Atkinson, M., & Tomasino, D. (2003). Impact of a workplace stress reduction program on blood pressure and emotional health in hypertensive employees. The Journal of Complementary and Alternative Medicine, 9, 355–369.CrossRefGoogle Scholar
  25. Mier, C. M., Domenick, M. A., Turner, N. S., & Wilmore, J. H. (1996). Changes in stroke volume and maximal aerobic capacity with increased blood volume in men women. Journal of Applied Physiology, 80, 1180–1186.PubMedGoogle Scholar
  26. Porges, S. W. (1995) Orienting in a defensive world: mammalian modifications of our evolutionary heritage. A polyvagal theory. Psychophysiology, 32, 301–318.PubMedCrossRefGoogle Scholar
  27. Radvanski, D., Vaschillo, E., Vaschillo, B., Hassett, A., Lehrer, P., & Sigal, L. (2004) Heart Rate Variability Biofeedback for Fibromyalgia Treatment. Applied Psychophysiology and Biofeedback, 29, 308.Google Scholar
  28. Ringwood, J. V., & Malpas, S. C. (2001). Slow oscillations in blood pressure via a nonlinear feedback model. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 280(4), R1105–R1115.PubMedGoogle Scholar
  29. Saul, J. P., Berger, R. D., Albrecht, P., Stein, S. P., Chen, M. H., Cohen, R. J. (1991). Transfer function analysis of the circulation: unique insights into cardiovascular regulation. American Journal of Physiology, 261(4 Pt 2), H1231–1245.PubMedGoogle Scholar
  30. Shevde, K., Pagala, M., Tyagaraj, C., Udeh, C., Punjala, M., Arora, S., & Elfaham, A. (2002). Preoperative blood volume deficit influences blood transfusion requirements in females and males undergoing coronary bypass graft surgery. Journal of Clinical Anesthesia, 14, 512–517.PubMedCrossRefGoogle Scholar
  31. Sleight, P., La Rovere, M., Mortara, A., Pinna, G., Maestri, R., Leuzzi, S., Bianchini, B., Tavazzi, L., & Bernardi, L. (1995). Physiology and pathophysiology of heart rate and blood pressure variability in humans: is power spectral analysis largely an index of baroreflex gain? Clinical Science, 88, 103–109.PubMedGoogle Scholar
  32. Tiedt, N., Wohlgemuth, B., & Wohlgemuth, P. (1975). Dynamic characteristics of heart-rate responses to sine-function work-load patterns in man. Pflugers Archiv, 355(2), 175–187.PubMedCrossRefGoogle Scholar
  33. Ursino, M., & Magosso, E. (2003). Role of short-term cardiovascular regulation in heart period variability: a modeling study. American Journal of Physiology—Heart and Circulatory Physiology, 284, H1479–H1493.PubMedGoogle Scholar
  34. Vashchillo, E. G., Zingerman, A. M., Konstantinov, M. A., & Menitsky, D. N. (1983) Research of the resonance characteristics for cardiovascular system. Human Physiology, 9, 257–265.Google Scholar
  35. Vaschillo, E. G. (1984). Dynamics of slow-wave cardiac rhythm structure as an index of functional state of an operant. Unpublished Doctoral dissertation. Saint Petersburg, Russia: Institute of Experimental Medicine.Google Scholar
  36. Vaschillo, E., Lehrer, P., Rishe, N., & Konstantinov, M. (2002). Heart rate variability biofeedback as a method for assessing baroreflex function: a preliminary study of resonance in the cardiovascular system. Applied Psychophysiology and Biofeedback, 27, 1–27.PubMedCrossRefGoogle Scholar
  37. Vaschillo, E., Vaschillo, B., & Lehrer, P. (2004). Heartbeat synchronizes with respiratory rhythm only under specific circumstances. Chest, 126(4), 1385–1406.PubMedCrossRefGoogle Scholar
  38. Vaschillo, E., Vaschillo, B., Lehrer, P., Bates, M. E., Ray, S., Udo, T., & Pandina, R. (2005). Using Heart Rate Variability to evaluate response to drug-related stimuli: A new approach. Psychophysiology, 42, Suppl. 1, 125.Google Scholar
  39. Vaschillo, E., Vaschillo, B., Bates, M. E., Lehrer, P., Pandina, R., Ray, S., & Udo, T. (2005). Heart rate resonance features do not depend on respiration. Biological Psychology, in press.Google Scholar
  40. Wigertz, O. (1971). Dynamics of respiratory and circulatory adaptation to muscular exercise in man. A systems analysis approach. Acta Physiologica Scandinavica Supplementum, 363, 1–32.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Evgeny G. Vaschillo
    • 1
    • 3
  • Bronya Vaschillo
    • 1
  • Paul M. Lehrer
    • 2
  1. 1.Rutgers UniversityPiscatawayUSA
  2. 2.UMDNJ—Robert Wood Johnson Medical SchoolPiscatawayUSA
  3. 3.Center of Alcohol StudiesThe State University of New JerseyPiscatawayUSA

Personalised recommendations