Foundation and Practice of Neurofeedback for the Treatment of Epilepsy

Article

This review provides an updated overview of the neurophysiological rationale, basic and clinical research literature, and current methods of practice pertaining to clinical neurofeedback. It is based on documented findings, rational theory, and the research and clinical experience of the authors. While considering general issues of physiology, learning principles, and methodology, it focuses on the treatment of epilepsy with sensorimotor rhythm (SMR) training, arguably the best established clinical application of EEG operant conditioning. The basic research literature provides ample data to support a very detailed model of the neural generation of SMR, as well as the most likely candidate mechanism underlying its efficacy in clinical treatment. Further, while more controlled clinical trials would be desirable, a respectable literature supports the clinical utility of this alternative treatment for epilepsy. However, the skilled practice of clinical neurofeedback requires a solid understanding of the neurophysiology underlying EEG oscillation, operant learning principles and mechanisms, as well as an in-depth appreciation of the ins and outs of the various hardware/software equipment options open to the practitioner. It is suggested that the best clinical practice includes the systematic mapping of quantitative multi-electrode EEG measures against a normative database before and after treatment to guide the choice of treatment strategy and document progress towards EEG normalization. We conclude that the research literature reviewed in this article justifies the assertion that neurofeedback treatment of epilepsy/seizure disorders constitutes a well-founded and viable alternative to anticonvulsant pharmacotherapy.

KEY WORDS:

neurofeedback neurotherapy EEG operant conditioning epilepsy 

REFERENCES

  1. Abel, T., & Lattal, K. M. (2001). Molecular mechanisms of memory acquisition, consolidation and retrieval. Current Opinion in Neurobiology, 11, 180–187.CrossRefPubMedGoogle Scholar
  2. Andrews, D. J., & Schonfeld, W. H. (1992). Predictive factors for controlling seizures using a behavioral approach. Seizure, 1(2), 111–116.CrossRefPubMedGoogle Scholar
  3. Babb, M. I., & Chase, M. H. (1974). Masseteric and digastric reflex during conditioned sensorimotor rhythm. Electroencephalography and Clinical Neurophysiology, 36, 357–365.CrossRefPubMedGoogle Scholar
  4. Birbaumer, N. (1997). Slow cortical potentials: Their origin, meaning, and clinical use. In G. J. M. Boxtel & K. B. E. von Böcker (Eds.), Brain and behaviour—past, present and future (pp. 25–39). Tilborg: University Press.Google Scholar
  5. Birbaumer, N. (2005). Breaking the silence: Brain–computer interfaces in paralysis. Proceedings of the Annual Conference, Int. Soc. for Neuronal Reg., 13, 2.Google Scholar
  6. Brodal, P. (1992). The basal ganglia. In The central nervous system: Structure and function (pp. 246–261). New York: Oxford University Press.Google Scholar
  7. Brogden, W. J. (1951). Animal studies of learning. In S. S. Stevens (Ed.), Handbook of experimental psychology (pp. 568–612). New York: Wiley.Google Scholar
  8. Chase, M. H., & Harper, R. M. (1971). Somatomotor and visceromotor correlates of operantly conditioned 12–14 c/s sensorimotor cortical activity. Electroencephalography and Clinical Neurophysiology, 31, 85–92.CrossRefPubMedGoogle Scholar
  9. Chevalier, G., & Deniau, J. M. (1990). Disinhibition as a basic process in the expression of striatal functions. Trends in Neuroscience, 13, 277–280.CrossRefGoogle Scholar
  10. Cott, A., Pavloski, R. P., & Black, A. H. (1979). Reducing epileptic seizures through operant conditioning of central nervous system activity: Procedural variables. Science, 203, 73–75.PubMedCrossRefGoogle Scholar
  11. DeLong, M. R. (1990). Primate models of movement disorders of basal ganglia origin. Trends in Neuroscience, 13, 281–285.CrossRefGoogle Scholar
  12. Egner, T., & Gruzelier, J. H. (2001). Learned self-regulation of EEG frequency components affects attention and event-related brain potentials in humans. NeuroReport, 12(18), 4155–4160.CrossRefPubMedGoogle Scholar
  13. Egner, T., & Gruzelier, J. H. (2004). EEG biofeedback of low beta band components: Frequency-specific effects on variables of attention and event-related brain potentials. Clinical Neurophysiology, 115, 131–139.CrossRefPubMedGoogle Scholar
  14. Etevenon, P. (1986). Applications and perspectives of EEG cartography. In F. H. Duffy (Ed.), Topographic mapping of brain electrical activity (pp. 113–141). Boston: Butterworth.Google Scholar
  15. Felsinger, J. M., Gladstone, A. L., Yamaguchi, H. G., & Hull, C. L. (1947). Reaction latency (StR) as a function of the number of reinforcements. Journal of Experimental Psychology, 37, 214–228.CrossRefGoogle Scholar
  16. Ferster, C. B., & Skinner, B. F. (1957). Schedules of reinforcement. New York: Appleton-Century-Crofts.Google Scholar
  17. Finley, W. W., Smith, H. A., & Etherton, M. D. (1975). Reduction of seizures and normalization of the EEG in a severe epileptic following sensorimotor biofeedback training: Preliminary study. Biological Psychiatry, 2, 189–203.CrossRefGoogle Scholar
  18. Froemke, R. C., Poo, M. M., & Dan, Y. (2005). Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature, 434, 221–225.CrossRefPubMedGoogle Scholar
  19. Fuchs, T., Birbaumer, N., Lutzenberger, W., Gruzelier, J. H., & Kaiser, J. (2003). Neurofeedback treatment for attention-deficit/hyperactivity disorder in children: A comparison with methylphenidate. Applied Psychophysiology and Biofeedback, 28, 1–12.CrossRefPubMedGoogle Scholar
  20. Grice, G. R. (1948). The relation of secondary reinforcement to delayed reward in visual discrimination learning. Journal of Experimental Psychology, 38, 1–16.CrossRefPubMedGoogle Scholar
  21. Harper, R. M., & Sterman, M. B. (1972). Subcortical unit activity during a conditioned 12–14 Hz sensorimotor EEG rhythm in the cat. Federation Proceedings, 31, 404.Google Scholar
  22. Hauri, P. (1981) Treating psychophysiologic insomnia with biofeedback. Archives of General Psychiatry, 38, 752–758.PubMedGoogle Scholar
  23. Hirshberg, L. M., Chiu, S., & Frazier, J. A. (2005). Emerging brain-based interventions for children and adolescents: Overview and clinical perspective. Child and Adolescent Psychiatric Clinics of North America, 14, 1–19.CrossRefPubMedGoogle Scholar
  24. Howe, R. C., & Sterman, M. B. (1972). Cortical-subcortical EEG correlates of suppressed motor behavior during sleep and waking in the cat. Electroencephalography and Clinical Neurophysiology, 32, 681–695.CrossRefPubMedGoogle Scholar
  25. Howe, R. C., & Sterman, M. B. (1973). Somatosensory system evoked potentials during waking behaviour and sleep in the cat. Electroencephalography and Clinical Neurophysiology, 34, 605–618.CrossRefPubMedGoogle Scholar
  26. Johnstone, J., Gunkelman, J., & Lunt, J. (2005). Clinical database development: Characterization of EEG phenotypes. Clinical EEG and Neuroscience, 36, 99–107.PubMedGoogle Scholar
  27. Kaiser, D. A. (2000). QEEG: State of the art or state of confusion. Journal of Neurotherapy, 4, 57–75.CrossRefGoogle Scholar
  28. Kaiser, D. A., & Sterman, M. B. (2001). Automatic artifact detection, overlapping windows, and state transitions. Journal of Neurotherapy, 4(3), 85–92.CrossRefGoogle Scholar
  29. Kaiser, D. A., & Sterman, M. B. (2005). Correcting sampling bias of tapering windows. International Journal of Psychophysiology Manuscript submitted for publication.Google Scholar
  30. Kaplan, B. J. (1975). Biofeedback in epileptics: Equivocal relationship of reinforced EEG frequency to seizure reduction. Epilepsia, 16, 477–485.PubMedCrossRefGoogle Scholar
  31. Klimesch, W., Schimke, H., & Pfurtscheller, G. (1993). Alpha frequency, cognitive load and memory performance. Brain Topography, 5, 241–251.CrossRefPubMedGoogle Scholar
  32. Kotchoubey, B., Strehl, U., Holzapfel, S., Blankenhorn, V., Froscher, W., & Birbaumer, N. (1999). Negative potential shifts and the prediction of the outcome of neurofeedback therapy in epilepsy. Clinical Neurophysiology, 110(4), 683–686.CrossRefPubMedGoogle Scholar
  33. Kotchoubey, B., Strehl, U., Uhlmann, C., et al. (2001). Modification of slow cortical potentials in patients with refractory epilepsy: A controlled outcome study. Epilepsia, 42, 406–416.CrossRefPubMedGoogle Scholar
  34. Kuhlman, W. N., & Allison, T. (1978). EEG feedback training in the treatment of epilepsy: Some questions and some answers. Pavlovian Journal of Biological Science, 12(2), 112–122.Google Scholar
  35. Lantz, D., & Sterman, M. B. (1988). Neuropsychological assessment of subjects with uncontrolled epilepsy: Effects of EEG biofeedback training. Epilepsia, 29(2), 163–171.PubMedCrossRefGoogle Scholar
  36. Levesque, J., & Beauregard, M. (2005). Effect of neurofeedback training on the neural substrates of selective attention in children with attention-deficit/hyperactivity disorder: A functional magnetic resonance imaging study. Neuroscience Letters.Google Scholar
  37. Lorensen, T. D., & Dickson, P. (2004). Quantitative EEG Normative Databases: A comparative investigation. Journal of Neurotherapy, 8, 53–68.CrossRefGoogle Scholar
  38. Lubar, J. F., & Bahler, W. W. (1976). Behavioral management of epileptic seizures following EEG biofeedback training of the sensorimotor rhythm. Biofeedback and Self Regulation, 7, 77–104.CrossRefGoogle Scholar
  39. Lubar, J. F., Shabsin, H. S., Natelson, S. E., et al. (1981). EEG operant conditioning in intractible epileptics. Archives of Neurology, 38, 700–704.PubMedGoogle Scholar
  40. Malenka, R. C., & Nicoll, R. A. (1999). Long-term potentiation—a decade of progress? Science, 285, 1870–1874.CrossRefPubMedGoogle Scholar
  41. Marczynski, T. J., Harris, C. M., & Livezey, G. T. (1981). The magnitude of post-reinforcement EEG synchronization (PRS) in cats reflects learning ability. Brain Research, 204, 214–219.CrossRefPubMedGoogle Scholar
  42. Monastra, V. J., Monastra, D. M., & George, S. (2002). The effects of stimulant therapy, EEG biofeedback, and parenting style on the primary symptoms of attention-deficit/hyperactivity disorder. Applied Psychophysiology and Biofeedback, 27, 231–249.CrossRefPubMedGoogle Scholar
  43. Monastra, V. J., Lynn, S., Linden, M., Lubar, J. F., Gruzelier, J., & LaVaque, T. J. (2005). Electroencephalographic biofeedback in the treatment of attention-deficit/hyperactivity disorder. Applied Psychophysiology and Biofeedback, 30, 95–114.CrossRefPubMedGoogle Scholar
  44. Monderer, R. S., Harrison, D. M., & Haut, S. R. (2002). Neurofeedback and epilepsy. Epilepsy and Behavior, 3, 214–218.CrossRefPubMedGoogle Scholar
  45. Pearce, J. M., & Hall, G. (1978). Overshadowing the instrumental conditioning of a lever-press response by a more valid predictor of reinforcement. Journal of Experimental Psychology: Animal Behavior Processes, 4, 356–367.CrossRefGoogle Scholar
  46. Quy, R. J., Hutt, S. J., & Forrest, S. (1979). Sensorimotor rhythm feedback training and epilepsy: Some methodological and conceptual issues. Biological Psychology, 9, 129–149.CrossRefPubMedGoogle Scholar
  47. Rossiter, T. R., & LaVaque, T. J. (1995). A comparison of EEG biofeedback and psychostimulants in treating attention deficit hyperactivity disorders. Journal of Neurotherapy, 1, 48–59.CrossRefGoogle Scholar
  48. Rockstroh, B., Elbert, T., Birbaume, N., et al. (1993). Cortical self-regulation in patients with epilepsies. Epilepsy Research, 14, 63–72.CrossRefPubMedGoogle Scholar
  49. Roth, S. R., Sterman, M. B., & Clemente, C. C. (1967). Comparison of EEG correlates of reinforcement, internal inhibition, and sleep. Electroencephalography and Clinical Neurophysiology, 23, 509–520.CrossRefPubMedGoogle Scholar
  50. Seifert, A. R., & Lubar, J. F. (1975). Reduction of epileptic seizures through EEG biofeedback training. Biological Psychology, 3, 157–184.CrossRefPubMedGoogle Scholar
  51. Soderling, T. R., & Derkach, V. A. (2000). Postsynaptic protein phosphorylation and LTP. Trends in Neuroscience, 23, 75–80.CrossRefGoogle Scholar
  52. Sterman, M. B. (1996). Physiological origins and functional correlates of EEG rhythmic activities: Implications for self-regulation. Biofeedback and Self Regulation, 21, 3–33.CrossRefPubMedGoogle Scholar
  53. Sterman, M. B. (2000). Basic concepts and clinical findings in the treatment of seizure disorders with EEG operant conditioning. Clinical Electroencephalography, 31(1), 45–55.PubMedGoogle Scholar
  54. Sterman, M. B. (2005). Principles of neurotherapy. Proceedings of the Annual Conference, Int. Soc. for Neuronal. Reg. 13, 23.Google Scholar
  55. Sterman, M. B., & Friar, L. (1972). Suppression of seizures in an epileptic following sensorimotor EEG feedback training. Electroencephalography and Clinical Neurophysiology, 33, 89–95.CrossRefPubMedGoogle Scholar
  56. Sterman, M. B., & Kaiser, D. A. (2001). Comodulation: A new QEEG analysis metric for assessment of structural and functional disorders of the CNS. Journal of Neurotherapy, 4(3), 73–83.CrossRefGoogle Scholar
  57. Sterman, M. B., Kaiser, D. A., & Veigel, B. (1996). Spectral analysis of event-related EEG responses during short-term memory performance. Brain Topography, 9(1), 21–30.CrossRefGoogle Scholar
  58. Sterman, M. B., & MacDonald, L. R. (1978). Effects of central cortical EEG feedback training on incidence of poorly controlled seizures. Epilepsia 19, 207–222.PubMedCrossRefGoogle Scholar
  59. Sterman, M. B., MacDonald, L. R., & Stone, R. K. (1974). Biofeedback training of the sensorimotor EEG rhythm in man: Effects on epilepsy. Epilepsia 15, 395–417.PubMedCrossRefGoogle Scholar
  60. Sterman, M. B., Mann, C. A., Kaiser, D. A., & Suyenobu, B. Y. (1994). Multiband topographic EEG analysis of a simulated visuomotor aviation task. International Journal of Psychophysiology, 16, 49–56.CrossRefPubMedGoogle Scholar
  61. Sterman, M. B., Howe, R. D., & Macdonald, L. R. (1970). Facilitation of spindle-burst sleep by conditioning of electroencephalographic activity while awake. Science, 167, 1146–1148.PubMedCrossRefGoogle Scholar
  62. Sterman, M. B., & Wyrwicka, W. (1967). EEG correlates of sleep: Evidence for separate forebrain substrates. Brain Research, 6, 143–163.CrossRefPubMedGoogle Scholar
  63. Sterman, M. B., Wyrwicka, W., & Roth, S. R. (1969). Electrophysiological correlates and neural substrates of alimentary behavior in the cat. Annals of the New York Academy of Sciences, 157, 723–739.PubMedCrossRefGoogle Scholar
  64. Thatcher, R. W. (1992). Cyclic cortical reorganization during early childhood. Brain and Cognition, 20, 24–50.CrossRefPubMedGoogle Scholar
  65. Walker, M. P. (2005). A refined model of sleep and the time course of memory formation. Behavioral and Brain Sciences, 28, 51–64.CrossRefPubMedGoogle Scholar
  66. Walker, J. E., & Kozlowski, G. P. (2005). Neurofeedback treatment of epilepsy. Child and Adolescent Psychiatric Clinics of North America, 14, 163–176.CrossRefPubMedGoogle Scholar
  67. Williams, B. A. (1999). Associative competition in operant conditioning: Blocking the response–reinforcer association. Psychonomic Bulletin and Review, 6, 618–623.PubMedGoogle Scholar
  68. Wyler, A. R., Robbins, C. A., & Dodrill, C. B. (1976). EEG operant conditioning for control of epilepsy. Epilepsia, 20, 279–286.CrossRefGoogle Scholar
  69. Wyrwicka, W., & Sterman, M. B. (1968). Instrumental conditioning of sensorimotor cortex EEG spindles in the waking cat. Physiology and Behavior, 3, 703–707.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Departments of Neurobiology and Biobehavioral PsychiatrySchool of Medicine, UCLALos AngelesUSA
  2. 2.Functional MRI Research CenterColumbia UniversityColumbiaUSA

Personalised recommendations