Applied Psychophysiology and Biofeedback

, Volume 31, Issue 1, pp 3–20 | Cite as

Functional Magnetic Resonance Imaging Investigation of the Effects of Neurofeedback Training on the Neural Bases of Selective Attention and Response Inhibition in Children with Attention-Deficit/Hyperactivity Disorder

  • Mario Beauregard
  • Johanne Lévesque

Two functional magnetic resonance imaging (fMRI) experiments were undertaken to measure the effect of neurofeedback training (NFT), in AD/HD children, on the neural substrates of selective attention and response inhibition. Twenty unmedicated AD/HD children participated to these experiments. Fifteen children were randomly assigned to the Experimental (EXP) group whereas the other five children were randomly assigned to the Control (CON) group. Only subjects in the EXP group underwent NFT. EXP subjects were trained to enhance the amplitude of the SMR (12–15 Hz) and beta 1 activity (15–18 Hz), and decrease the amplitude of theta activity (4–7 Hz). Subjects from both groups were scanned one week before the beginning of NFT (Time 1) and 1 week after the end of NFT (Time 2), while they performed a “Counting Stroop” task (Experiment 1) and a Go/No-Go task (Experiment 2). At Time 1, in both groups, the Counting Stroop task was associated with significant activation in the left superior parietal lobule. For the Go/No-Go task, no significant activity was detected in the EXP and CON groups. At Time 2, in both groups, the Counting Stroop task was associated with significant activation of the left superior parietal lobule. This time, however, there were significant loci of activation, in the EXP group, in the right ACC, left caudate nucleus, and left substantia nigra. No such activation loci were seen in CON subjects. For the Go/No-Go task, significant loci of activation were noted, in the EXP group, in the right ventrolateral prefrontal cortex, right ACcd, left thalamus, left caudate nucleus, and left substantia nigra. No significant activation of these brain regions was measured in CON subjects. These results suggest that NFT has the capacity to functionally normalize the brain systems mediating selective attention and response inhibition in AD/HD children.


selective attention response inhibition AD/HD children neurofeedback functional magnetic resonance imaging prefrontal cortex anterior cingulate striatum 



This work was supported by grants from the Fondation Lucie et André Chagnon and the International Society for Neuronal Regulation (ISNR). We would like to acknowledge Dr. Isabelle Fortier and her team (Hôpital Ste-Justine) for the recruitment and cognitive evaluation of the participants, as well as Dr. Phillipe Robaey, the child psychiatrist who diagnosed the participants (Hôpital Ste-Justine). We also thank Mélanie Veilleux and the staff of the Département de radiologie, CHUM, Hôpital Notre-Dame, for their proficient technical assistance.


  1. Amen, D. G., & Carmichael, B. D. (1997). High-resolution brain SPECT imaging in ADHD. Annals of Clinical Psychiatry, 9, 81–86.CrossRefPubMedGoogle Scholar
  2. Aylward, E. H., Reiss, A. L., Reader, M. J., Singer, H. S., Brown, J. E., & Denckla, M. B. (1996). Basal ganglia volumes in children with attention-deficit hyperactivity disorder. Journal of Child Neurology, 11, 112–115.PubMedGoogle Scholar
  3. Barkley, R. A. (1996). Attention deficit hyperactivity disorder: A handbook for diagnosis and treatment. New York: Guilford Press.Google Scholar
  4. Barkley, R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychological Bulletin, 121, 65–94.CrossRefPubMedGoogle Scholar
  5. Bobb, A. J., Castellanos, F. X., Addington, A. M., & Rapoport, J. L. (2005). Molecular genetic studies of ADHD: 1991 to 2004. American Journal of Medical Genetics B Neuropsychiatry Genetics, 132, 109–125.Google Scholar
  6. Booth, J. R., Burman, D. D., Meyer, J. R., Lei, Z., Trommer, B. L., Davenport, N. D., et al. (2005). Larger deficits in brain networks for response inhibition than for visual selective attention in attention deficit hyperactivity disorder (ADHD). Journal of Child Psychology and Psychiatry, 46, 94–111.CrossRefPubMedGoogle Scholar
  7. Burgund, E. D., Kang, H. C., Kelly, J. E., Buckner, R. L., Snyder, A. Z., Petersen, S. E., et al. (2002). The feasibility of a common stereotactic space for children and adults in fMRI studies of development. Neuroimage, 17, 184–200.CrossRefPubMedGoogle Scholar
  8. Bush, G., Whalen, P. J., Rosen, B. R., Jenike, M. A., McInerney, S. C., & Rauch, S. L. (1998). The counting Stroop: An interference task specialized for functional neuroimaging—validation study with functional MRI. Human Brain Mapping, 6, 270–282.CrossRefPubMedGoogle Scholar
  9. Bush, G., Frazier, J. A., Rauch, S. L., Seidman, L. J., Whalen, P. J., Jenike, M. A., et al. (1999). Anterior cingulate cortex dysfunction in attention-deficit hyperactivity disorder revealed by fMRI and the Counting Stroop. Biological Psychiatry, 45, 1542–1552.CrossRefPubMedGoogle Scholar
  10. Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4, 215–222.CrossRefPubMedGoogle Scholar
  11. Calabresi, P., Pisani, A., Mercuri, N. B., & Bernardi, G. (1996). The corticostriatal projection: From synaptic plasticity to dysfunctions of the basal ganglia. Trends in Neurosciences, 19, 19–24.CrossRefPubMedGoogle Scholar
  12. Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., & Cohen, J. D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280, 747–749.CrossRefPubMedGoogle Scholar
  13. Casey, B. J., Durston, S., & Fossella, J. A. (2001). Evidence for a mechanistic model of cognitive control. Clinical Neuroscience Research, 1, 267–282.CrossRefGoogle Scholar
  14. Castellanos, F. X., Giedd, J. N., Eckburg, P., Marsh, W. L., Vaituzis, A. C., Kaysen, D., et al. (1994). Quantitative morphology of the caudate nucleus in attention deficit hyperactivity disorder. American Journal of Psychiatry, 151, 1791–1796.PubMedGoogle Scholar
  15. Castellanos, F. X., Giedd, J. N., Marsh, W. L., Hamburger, S. D., Vaituzis, A. C., Dickstein, D. P., et al. (1996). Quantitative brain magnetic resonance imaging in attention-deficit hyperactivity disorder. Archives of General Psychiatry, 53, 607–616.PubMedGoogle Scholar
  16. Castellanos, F. X., Marvasti, F. F., Ducharme, J. L., Walter, J. M., Israel, M. E., Krain, A., et al. (2000). Executive function oculomotor tasks in girls with ADHD. Journal of the American Academy of Child and Adolescent Psychiatry, 39, 644–650.CrossRefPubMedGoogle Scholar
  17. Castellanos, F. X., Giedd, J. N., Berquin, P. C., Walter, J. M., Sharp, W., Tran, T., et al. (2001). Quantitative brain magnetic resonance imaging in girls with attentiondeficit/hyperactivity disorder. Archives of General Psychiatry, 58, 289–295.CrossRefPubMedGoogle Scholar
  18. Castellanos, F. X., Lee, P. P., Sharp, W., Jeffries, J. N. N. O., Greenstein, D. K., Blumenthal, J. D., et al. (2002). Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA, 288, 1740–1748.CrossRefPubMedGoogle Scholar
  19. Conners, C. K., Wells, K. C., Parker, J. D. A., Sitarenios, G., Diamond, J. M., Powell, J. W. (1997). A new self-report scale for the assessment of adolescent psychopathology: Factor structure, reliability, validity and diagnostic sensitivity. Journal of Abnormal Child Psychology, 25, 487–497.CrossRefPubMedGoogle Scholar
  20. Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L., & Petersen, S. E. (1991). Selective and divided attention during visual discriminations of shape, color, and speed: Functional anatomy by positron emission tomography. Journal of Neuroscience, 11, 2383–2402.PubMedGoogle Scholar
  21. Corbetta, M., Miezin, F. M., Shulman, G. L., & Petersen, S. E. (1993). A PET study of visuospatial attention. Journal of Neuroscience, 13, 1202–1226.PubMedGoogle Scholar
  22. Deiber, M. P., Honda, M., Ibanez, V., Sadato, N., & Hallett, M. (1999). Mesial motor areas in selfinitiated versus externally triggered movements examined with fMRI: Effect of movement type and rate. Journal of Neurophysiology, 81, 3065–3077.PubMedGoogle Scholar
  23. Dolan, R. J., Fletcher, P., Frith, C. D., Friston, K. J., Frackowiak, R. S., & Grasby, P. M. (1995). Dopaminergic modulation of impaired cognitive activation in the anterior cingulated cortex in schizophrenia. Nature, 378, 180–182.CrossRefPubMedGoogle Scholar
  24. Dresel, S., Krause, J., Krause, K. H., LaFougere, C., Brinkbaumer, K., Kung, H. F., et al. (2000). Attention deficit hyperactivity disorder: Binding of [99mTc]TRODAT-1 to the dopamine transporter before and after methylphenidate treatment. European Journal of Nuclear Medicine, 27, 1518–1524.CrossRefPubMedGoogle Scholar
  25. American Psychiatric Association (1994). Diagnostic and statistical manual of mental disorders (4th ed.) (DSM-IV). Washington, D.C.Google Scholar
  26. Durston, S., Tottenham, N. T., Thomas, K. M., Davidson, M. C., Eigsti, I. M., Yang, Y., et al. (2003). Differential patterns of striatal activation in young children with and without ADHD. Biological Psychiatry, 53, 871–878.CrossRefPubMedGoogle Scholar
  27. Durston, S., Hulshoff Pol, H. E., Schnack, H. G., Buitelaar, J. K., Steenhuis, M. P., Minderaa, R. B., et al. (2004). Magnetic resonance imaging of boys with attention-deficit/hyperactivity disorder and their unaffected siblings. Journal of the American Academy of Child and Adolescent Psychiatry, 43, 332–340.CrossRefPubMedGoogle Scholar
  28. Filipek, P. A., Semrud-Clikeman, M., Steingard, R. J., Renshaw, P. F., Kennedy, D. N., & Biederman, J. (1997). Volumetric MRI analysis comparing subjects having attention-deficit hyperactivity disorder with normal controls. Neurology, 48, 589–601.PubMedGoogle Scholar
  29. Friston, K. J., & Frackowiak, R. S. J. (1997). Images of the future: A philosophical coda. In: R. S. J. Frackowiak, K. J. Friston, R. J. Dolan, & J. C. Mazziotta (Eds.), Human brain function (pp. 487–517). San Diego: Academic Press.Google Scholar
  30. Fuchs, T., Birbaumer, N., Lutzenberger, W., Gruzelier, J. H., & Kaiser, J. (2003). Neurofeedback treatment for attention-deficit/hyperactivity disorder in children: A comparison with methylphenidate. Applied Psychophysiology and Biofeedback, 28, 1–12.CrossRefPubMedGoogle Scholar
  31. Garavan, H., Ross, T. J., & Stein, E. A. (1999). Right hemispheric dominance of inhibitory control: An event-related functional MRI study. Proceedings of the National Academy of Sciences USA, 96, 8301–8306.CrossRefGoogle Scholar
  32. Garavan, H., Ross, T. J., Murphy, K., Roche, R. A., & Stein, E. A. (2002) Dissociable executive functions in the dynamic control of behavior: Inhibition, error detection, and correction. Neuroimage, 17, 1820–1829.CrossRefPubMedGoogle Scholar
  33. Godefroy, O., Lhullier, C., & Rousseaux, M. (1996). Non-spatial attention disorders in patients with frontal or posterior brain damage. Brain, 119, 191–202.PubMedCrossRefGoogle Scholar
  34. Goldman-Rakic, P. S. (1987). Development of cortical circuitry and cognitive function. Child Development, 58, 601–622.PubMedCrossRefGoogle Scholar
  35. Hartung, C. M., Milich, R., Lynam, D. R., & Martin, C. A. (2002). Understanding the relations among gender, disinhibition, and disruptive behavior in adolescents. Journal of Abnormal Psychology, 111, 659–664.CrossRefPubMedGoogle Scholar
  36. Hill, D. E., Yeo, R. A., Campbell, R. A., Hart, B., Vigil, J., & Brooks, W. (2003). Magnetic resonance imaging correlates of attention-deficit/hyperactivity disorder in children. Neuropsychology, 17, 496–506.CrossRefPubMedGoogle Scholar
  37. Hynd, G. W., Hern, K. L., Novey, E. S., Eliopulos, D., Marshall, R., Gonzalez, J. J., et al. (1993). Attention deficit-hyperactivity disorder and asymmetry of the caudate nucleus. Journal of Child Neurology, 8, 339–347.PubMedCrossRefGoogle Scholar
  38. Iaboni, F., Douglas, V. I., & Baker, A. G. (1995). Effects of reward and response costs on inhibition in ADHD children. Journal of Abnormal Psychology, 104, 232–240.CrossRefPubMedGoogle Scholar
  39. Itami, S., & Uno, H. (2002). Orbitofrontal cortex dysfunction in attention-deficit hyperactivity disorder revealed by reversal and extinction tasks. NeuroReport, 13, 2453–2457.CrossRefPubMedGoogle Scholar
  40. Kates, W. R., Frederikse, M., Mostofsky, S. H., Folley, B. S., Cooper, K., Mazur-Hopkins, P., et al. (2002). MRI parcellation of the frontal lobe in boys with attention deficit hyperactivity disorder or Tourette syndrome. Psychiatry Research, 116, 63–81.PubMedCrossRefGoogle Scholar
  41. Kiehl, K. A., Liddle, P. F., & Hopfinger, J. B. (2000). Error processing and the rostral anterior cingulate: An event-related fMRI study. Psychophysiology, 37, 216–223.CrossRefPubMedGoogle Scholar
  42. Kim, B. N., Lee, J. S., Shin, M. S., Cho, S. C., & Lee, D. S. (2002). Regional cerebral perfusion abnormalities in attention deficit/hyperactivity disorder. Statistical parametric mapping analysis. European Archives of Psychiatry and Clinical Neuroscience, 252, 219–225.CrossRefPubMedGoogle Scholar
  43. Konishi, S., Nakajima, K., Uchida, I., Sekihara, K., & Miyashita, Y. (1998). No-go dominant brain activity in human inferior prefrontal cortex revealed by functional magnetic resonance imaging. European Journal of Neuroscience, 10, 1209–1213.CrossRefPubMedGoogle Scholar
  44. Kropotov, J. D., Grin-Yatsenko, V. A., Ponomarev, V. A., Chutko, L. S., Yakovenko, E. A., & Nikishena, I. S. (2005). ERPs correlates of EEG relative beta training in ADHD children. International Journal of Psychophysiology, 55, 23–34.CrossRefPubMedGoogle Scholar
  45. Lezak, M. D. (1990). Neuropsychological assessment. In: J. Frederiks (Ed.), Handbook of clinical neurology: Vol. 1. Clinical neuropsychology, Elsevier (pp. 515–530). New York: Elsevier.Google Scholar
  46. Leimkuhler, M. E., & Mesulam, M. M. (1985). Reversible go-no go deficits in a case of frontal lobe tumor. Annals of Neurology, 18, 617–619.CrossRefPubMedGoogle Scholar
  47. Liddle, P. F., Kiehl, K. A., & Smith, A. M. (2001). Event-related fMRI study of response inhibition. Human Brain Mapping, 12, 100–109.CrossRefPubMedGoogle Scholar
  48. Linden, M., Habib, T., & Radojevic, V. (1996). A controlled study of the effects of EEG biofeedback on cognition and behavior of children with attention deficit disorder and learning disabilities. Biofeedback and Self Regulation, 21, 35–49.CrossRefPubMedGoogle Scholar
  49. Lou, H. C., Henriksen, L., Bruhn, P., Borner, H., & Nielsen, J. B. (1989). Striatal dysfunction in attention deficit and hyperkinetic disorder. Archives of Neurology, 46, 48–52.PubMedGoogle Scholar
  50. Lubar, J. F., & Shouse, M. N. (1976). EEG and behavioral changes in a hyperkinetic child concurrent with training of the sensorimotor rhythm (SMR): A preliminary report. Biofeedback and Self Regulation, 1, 293–306.CrossRefPubMedGoogle Scholar
  51. Lubar, J. O., & Lubar, J. F. (1984). Electroencephalographic biofeedback of SMR and beta for treatment of attention deficit disorders in a clinical setting. Biofeedback and Self Regulation, 9, 1–23.CrossRefPubMedGoogle Scholar
  52. Lubar, J. F., Swartwood, M. O., Swartwood, J. N., & O'Donnell, P. H. (1995). Evaluation of the effectiveness of EEG neurofeedback training for ADHD in a clinical setting as measured by changes in T. O. V. A. scores, behavioral ratings, and WISC-R performance. Biofeedback and Self Regulation, 20, 83–99.CrossRefPubMedGoogle Scholar
  53. Mannuzza, S., Klein, R. G., Bessler, A., Malloy, P., & Hynes, M. E. (1997). Educational and occupational outcome of hyperactive boys grown up. Journal of the American Academy of Child and Adolescent Psychiatry, 36, 1222–1227.CrossRefPubMedGoogle Scholar
  54. Mataro, M., Garcia-Sanchez, C., Junque, C., Estevez-Gonzalez, A., & Pujol, J. (1997). Magnetic resonance imaging measurement of the caudate nucleus in adolescents with attentiondeficit hyperactivity disorder and its relationship with neuropsychological and behavioural measures. Archives of Neurology, 54, 963–968.PubMedGoogle Scholar
  55. Menon, V., Adleman, N. E., White, C. D., Glover, G. H., & Reiss, A. L. (2001). Error-related brain activation during a Go/NoGo response inhibition task. Human Brain MappingHuman Brain Mapping, 12, 131–143.CrossRefGoogle Scholar
  56. Monastra, V. J., Monastra, D. M., & George, S. (2002). The effects of stimulant therapy, EEG biofeedback, and parenting style on the primary symptoms of attentiondeficit/hyperactivity disorder. Applied Psychophysiology and Biofeedback, 27, 231–249.CrossRefPubMedGoogle Scholar
  57. Mostofsky, S. H., Cooper, K. L., Kates, W. R., Denckla, M. B., & Kaufmann, W. E. (2002). Smaller prefrontal and premotor volumes in boys with attention-deficit/hyperactivity disorder. Biological Psychiatry, 52, 785–794.CrossRefPubMedGoogle Scholar
  58. Nieoullon, A., & Coquerel, A. (2003). Dopamine: A key regulator to adapt action, emotion, motivation and cognition. Current Opinion in Neurology, 16(Suppl, 2), S3–S9.PubMedCrossRefGoogle Scholar
  59. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97–113.CrossRefPubMedGoogle Scholar
  60. Overmeyer, S., Bullmore, E. T., Suckling, J., Simmons, A., Williams, S. C., Santosh, P. J., et al. (2001). Distributed grey and white matter deficits in hyperkinetic disorder MRI evidence for anatomical abnormality in an attentional network. Psychological Medicines, 31, 1425–1435.Google Scholar
  61. Pardo, J. V., Pardo, P. J., Janer, K. W., & Raichle, M. E. (1990). The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proceedings of the National Academy of Sciences USA, 87, 256–259.CrossRefGoogle Scholar
  62. Pardo, J. V., Fox, P. T., & Raichle, M. E. (1991). Localization of a human system for sustained attention by positron emission tomography. Nature, 349, 61–64.CrossRefPubMedGoogle Scholar
  63. Paus, T., Petrides, M., Evans, A. C., & Meyer, E. (1993). Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: A positron emission tomography study. Journal of Neurophysiology, 70, 453–469.PubMedGoogle Scholar
  64. Peterson, B. S., Skudlarski, P., Gatenby, J. C., Zhang, H., Anderson, A. W., & Gore, J. C. (1999). An fMRI study of Stroop word-color interference: Evidence for cingulate subregions subserving multiple distributed attentional systems. Biological Psychiatry, 45, 1237–1258.CrossRefPubMedGoogle Scholar
  65. Rossiter, T. R., & LaVaque, T. J. (1995). A comparison of EEG biofeedback and psychostimulants in treating attention deficit hyperactivity disorders. Journal of Neurotherapy, 1, 48–59.CrossRefGoogle Scholar
  66. Rossiter, T. (2004). The effectiveness of neurofeedback and stimulant drugs in treating AD/HD: Part II. Replication. Applied Psychophysiology and Biofeedback, 29, 233–243.CrossRefPubMedGoogle Scholar
  67. Rubia, K., Overmeyer, S., Taylor, E., Brammer, M., Williams, S. C. R., Simmons, A., et al. (1999). Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: A study with functional MRI. American Journal of Psychiatry, 156, 891–896.PubMedGoogle Scholar
  68. Rubia, K., Smith, A. B., Brammer, M. J., & Taylor, E. (2003). Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. Neuroimage, 20, 351–358.CrossRefPubMedGoogle Scholar
  69. Seamans, J. K., & Yang, C. R. (2004). The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Progress in Neurobiology, 74, 1–58.CrossRefPubMedGoogle Scholar
  70. Shallice, T. (1988). From neuropsychology to mental structure. Cambridge: Cambridge University Press.Google Scholar
  71. Shouse, M. N., & Lubar, J. F. (1979). Operant conditioning of EEG rhythms and ritalin in the treatment of hyperkinesis. Biofeedback and Self Regulation, 4, 299–312.CrossRefPubMedGoogle Scholar
  72. Sieg, K. G., Gaffney, G. R., Preston, D. F., & Hellings, J. A. (1995). SPECT brain imaging abnormalities in attention deficit hyperactivity disorder. Clinical Nuclear Medicine, 20, 55–60.PubMedCrossRefGoogle Scholar
  73. Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 1657–1661.CrossRefPubMedGoogle Scholar
  74. Sowell, E. R., Thompson, P. M., Welcome, S. E., Henkenius, A. L., Toga, A. W., & Peterson, B. S. (2003). Cortical abnormalities in children and adolescents with attention-deficit hyperactivity disorder. Lancet, 362, 1699–1707.CrossRefPubMedGoogle Scholar
  75. Spitzer, R. L., Williams, J. B., Gibbon, M., & First, M. B. (1992). The Structured Clinical Interview for DSM-III-R (SCID). I: History, rationale, and description. Archives of General Psychiatry, 49, 624–629.PubMedGoogle Scholar
  76. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662.CrossRefGoogle Scholar
  77. Talairach, J., & Tournoux, P. (1988). Co-planar stereotactic atlas of the human brain: 3-dimensional proportional system: An approach to cerebral imaging. New York: Thieme.Google Scholar
  78. Tamm, L., Menon, V., Ringel, J., & Reiss, A. L. (2004). Event-related FMRI evidence of frontotemporal involvement in aberrant response inhibition and task switching in attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 43, 1430–1440.CrossRefPubMedGoogle Scholar
  79. Tansey, M. A. (1984). EEG sensorimotor rhythm biofeedback training: Some effects on the neurologic precursors of learning disabilities. International Journal of Psychophysiology, 1, 163–177.CrossRefPubMedGoogle Scholar
  80. Tansey, M. A. (1985). Brainwave signatures–an index reflective of the brain's functional neuroanatomy: Further findings on the effect of EEG sensorimotor rhythm biofeedback training on the neurologic precursors of learning disabilities. International Journal of Psychophysiology, 3, 85–99.CrossRefPubMedGoogle Scholar
  81. Teicher, M. H., Anderson, C. M., Polcari, A., Glod, C. A., Maas, L. C., & Renshaw, P. F. (2000). Functional deficits in basal ganglia of children with attention-deficit/hyperactivity disorder shown with functional magnetic resonance imaging relaxometry. Nature Medicine, 6, 470–473.CrossRefPubMedGoogle Scholar
  82. Thompson, L., & Thompson, M. (1998). Neurofeedback combined with training in metacognitive strategies: Effectiveness in students with ADD. Applied Psychophysiology and Biofeedback, 23, 243–263.CrossRefPubMedGoogle Scholar
  83. Tinius, T. P. (2003). The integrated visual and auditory continuous performance test as a neuropsychological measure. Archives of clinical Neuropsychology, 18, 439–454.CrossRefPubMedGoogle Scholar
  84. Vaidya, C. J., Austin, G., Kirkorian, G., Ridlehuber, H. W., Desmond, J. E., Glover, G. H., et al. (1998). Selective effects of methylphenidate in attention deficit hyperactivity disorder: Afunctional magnetic resonance study. Proceedings of the National Academy of Sciences USA, 95, 14494–14499.CrossRefGoogle Scholar
  85. Vandenberghe, R., Dupont, P., De Bruyn, B., Bormans, G., Michiels, J., Mortelmans, L., et al. (1996). The influence of stimulus location on the brain activation pattern in detection and orientation discrimination. A PET study of visual attention. Brain, 119, 1263–1276.PubMedCrossRefGoogle Scholar
  86. Vandenberghe, R., Gitelman, D. R., Parrish, T. B., Mesulam, M. M. (2001). Functional specificity of superior parietal mediation of spatial shifting. Neuroimage, 14, 661–673.CrossRefPubMedGoogle Scholar
  87. Wechsler, D. (1981). Manual for Wechsler adult intelligence scale—revised. San Antonio, TX: The Psychological Corporation.Google Scholar
  88. Zametkin, A. J., Nordahl, T. E., Gross, M., King, A. C., Semple, W. E., Rumsey, J., et al. (1990). Cerebral glucose metabolism in adults with hyperactivity of childhood onset. New England Journal of Medicine, 323, 1361–1366.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Centre de Recherche en Neuropsychologie et Cognition (CERNEC)Département de Psychologie, Université de MontréalMontréalCanada
  2. 2.Département de RadiologieUniversité de MontréalMontréalCanada
  3. 3.Centre de recherche en sciences neurologiques (CRSN)Université de MontréalMontréalCanada
  4. 4.Centre de RechercheInstitut universitaire de gériatrie de Montréal (CRIUGM)MontréalCanada
  5. 5.Département de PsychologieUniversité de MontréalMontréalCanada

Personalised recommendations