Advertisement

Applied Psychophysiology and Biofeedback

, Volume 30, Issue 3, pp 195–204 | Cite as

A Functional Magnetic Resonance Imaging (fMRI) Study of Cue-Induced Smoking Craving in Virtual Environments

  • Jang-Han Lee
  • Youngsik LimEmail author
  • Brenda K. Wiederhold
  • Simon J. Graham
Article

Abstract

Smokers who are exposed to smoking-related cues show cardiovascular reactivity and smoking craving compared with their responses to neutral cues, and increased cue reactivity predicts decreased likelihood of successful cessation. Several brain imaging studies suggested four candidate brain regions that might differ in gray matter volumes and densities between smokers and nonsmokers. However, in these studies, smokers were only exposed to smoking-related objects. In our pilot study utilizing a virtual reality (VR) technique, virtual environments (VEs) were more immersive and evoked smoking craving more effectively than traditionally used methods. In this study, we sought to test whether smokers could experience cue-induced smoking craving inside the MRI scanner by using the VR system. The smoking cue reactivity scenario was based in part on our preliminary task and consisted of 2D and 3D (or VE) conditions. The group mean of participants had increased activity in the prefrontal cortex (PFC), left anterior cingulate gyrus (ACC), left supplementary motor area, left uncus, right inferior temporal gyrus, right lingual gyrus, and right precuneus in the 2D condition. Areas of differential activation in the 3D condition were as follows: left superior temporal gyrus, right superior frontal gyrus, and left inferior occipital gyrus in the 3D condition. This finding is consistent with those of previous studies of nicotine craving showing PFC and ACC activation. However, in the 3D condition, the PFC including the superior frontal gyrus as well as the superior temporal gyrus, inferior occipital gyrus, and cerebellum were activated. Therefore, in the 3D condition, participants seemed to have more attention, visual balance, and coordinating movement than in the 2D condition.

Keywords

smoking craving fMRI virtual reality virtual environment cue reactivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumann, S., Neff, C., Fetzick, S., Stangl, G., Basler, L., Vereneck, R., et al. (2003). A virtual reality system for neurobehavioral and functional MRI studies. CyberPsychology and Behavior, 6, 259–266.CrossRefPubMedGoogle Scholar
  2. Brody, A. L., Mandelkern, M. A., Jarvik, M. E., Lee, G. S., Smith, E. C., Huang, J. C., et al. (2004). Differences between smokers and nonsmokers in regional gray matter volumes and densities. Biological Psychiatry, 55, 77–84.CrossRefPubMedGoogle Scholar
  3. Brody, A. L., Mandelkern, M. A., London, E. D., Childress, A. R., Bota, R. G., Ho, M. L., et al. (2002). Brain metabolic changes during cigarette craving. Archives of General Psychiatry, 59, 1162–1172.CrossRefPubMedGoogle Scholar
  4. Childress, A. R., Mozley, P. D., McElgin, W., Fitzgerald, J., Reivich, M., & O’Brien, C. P. (1999). Limbic activation during cue-induced cocaine craving. American Journal of Psychiatry, 156, 11–18.PubMedGoogle Scholar
  5. Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162–173.CrossRefPubMedGoogle Scholar
  6. Devinsky, O., Morrell, M. J., & Vogt, B. A. (1995). Contributions of anterior cingulate cortex to behavior. Brain, 118, 279–306.PubMedGoogle Scholar
  7. Dewey, S. L., Brodie, J. D., Gerasimov, M., Horan, B., Gardner, E. L., & Ashby, C. R. J. (1999). A pharmacologic strategy for the treatment of nicotine addiction. Synapse, 31, 76–86.CrossRefPubMedGoogle Scholar
  8. Domino, E. F., Minoshima, S., Guthrie, S., Ohl, L., Ni, L., Koeppe, R. A., et al. (2000). Nicotine effects on regional cerebral blood flow in awake, resting tobacco smokers. Synapse, 38, 313–321.CrossRefPubMedGoogle Scholar
  9. Due, D. L., Huettel, S. A., Hall, W. G., & Rubin, D. C. (2002). Activation in mesolimbic and visuospatial neural circuits elicited by smoking cues: Evidence from functional magnetic resonance imaging. American Journal of Psychiatry, 159(6), 954–960.CrossRefPubMedGoogle Scholar
  10. Garavan, H., Pankiewicz, J., Bloom, A., Cho, J.-K., Sperry, L., Ross, T. J., et al. (2000). Cue-induced cocaine craving: Neuroanatomical specificity for drug users and drug stimuli. American Journal of Psychiatry, 157, 1789–1798.CrossRefPubMedGoogle Scholar
  11. Grant, S., London, E. D., Newlin, D. B., Villemagne, V. L., Liu, X., Contoreggi, C., et al. (1996). Activation of memory circuits during cue-elicited cocaine craving. Proceedings of the National Academy of Sciences of the United States of America, 93, 12040–12045.CrossRefPubMedGoogle Scholar
  12. Hegemann, S., Fitzek, S., Fitzek, C., & Fetter, M. (2004). Cortical vestibular representation in the superior temporal gyrus. Journal of Vestibular Research, 14(1), 33–35.PubMedGoogle Scholar
  13. Hoffman, H. G., Richards, T., Coda, B., Richards, A., & Sharar, S. R. (2003). The illusion of presence in immersive virtual reality during an fMRI brain scan. CyberPsychology and Behavior, 6, 127–131.CrossRefPubMedGoogle Scholar
  14. Horti, A. G., Scheffel, U., Kimes, A., Musachio, J., Ravert, H., Mathews, W., et al. (1998). Synthesis and evaluation of N-[11C] methylated analogues of epibatidine as tracers for positron emission tomographic studies of nicotinic acetylcholine receptors. Journal of Medicinal Chemistry, 41, 4199–4206.CrossRefPubMedGoogle Scholar
  15. Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lillienthal, M. G. (1993). A simulator sickness questionnaire (SSQ) : A new method for quantifying simulator sickness. International Journal of Aviation Psychology, 3(3), 203–220.Google Scholar
  16. Killen, J. D., & Fortmann, S. P. (1997). Craving is associated with smoking relapse: Findings from three prospective studies. Experimental and Clinical Psychopharmacology, 5(2), 137–142.CrossRefGoogle Scholar
  17. Lee, J. H., Ku, J. H., Kim, K. U., Kim, B. N., Kim, I. Y., Yang, B. H., et al. (2003). Experimental application of virtual reality for nicotine craving through cue exposure. CyberPsychology and Behavior, 6(3), 275–280.CrossRefPubMedGoogle Scholar
  18. Longstreth, W. T., Arnold, A. M., Manolio, T. A., Burke, G. L., Bryan, N., Jungreis, C. A., et al. (2000). Clinical correlates of ventricular and sulcal size on cranial magnetic resonance imaging of 3,301 elderly people: The cardiovascular health study. Neuroepidemiology, 19, 30–42.CrossRefPubMedGoogle Scholar
  19. Longstreth, W. T., Diehr, P., Manolio, T. A., Beauchamp, N. J., Jungreis, C. A., & Lefkowitz, D. (2001). Cluster analysis and patterns of findings on cranial magnetic resonance imaging of the elderly: The cardiovascular health study. Archives of Neurology, 58, 635–640.CrossRefPubMedGoogle Scholar
  20. Maas, L. C., Lukas, S. E., Kaufman, M. J., Weiss, R. D., Daniels, S. L., Rogers, V. W., et al. (1998). Functional magnetic resonance imaging of human brain activation during cue-induced cocaine craving. American Journal of Psychiatry, 155, 124–126.PubMedGoogle Scholar
  21. Maude-Griffin, P. M., & Tiffany, S. T. (1996). Production of smoking urges through imagery: The impact of affect and smoking abstinence. Experimental and Clinical Psychopharmacology, 4, 198–202.CrossRefGoogle Scholar
  22. Mraz, R., Hong, J., Quintin, G., Staines, W. R., McIlroy, W. E., Zakzanis, K. K., et al. (2003). A platform for combining virtual reality experiments with functional magnetic resonance imaging. CyberPsychology and Behavior, 6(4), 383–388.CrossRefPubMedGoogle Scholar
  23. Musachio, J., Villemagne, V., Scheffel, U., Stathis, M., Finley, P., Horti, A., et al. (1997). [125I/123I] IPH: A radioiodinated analog of epibatidine for in vivo studies of nicotinic acetylcholine receptors. Synapse, 26, 392–399.CrossRefPubMedGoogle Scholar
  24. Nakamura, H., Tanaka, A., Nomoto, Y., Ueno, Y., & Nakayama, Y. (2000). Activation of fronto-limbic system in the human brain by cigarette smoking: Evaluated by a CBF measurement. Keio Journal of Medicine, 49, A122–A124.PubMedGoogle Scholar
  25. Niaura, R., Abrams, D. B., Pedraza, M., Monti, P. M., & Rohsenow, D. J. (1992). Smokers’ reactions to interpersonal interaction cues and presentation of smoking cues. Addictive Behaviors, 17, 557–566.CrossRefPubMedGoogle Scholar
  26. Niaura, R., Abrams, D., Demuth, B., Pinto, R., & Monti, P. (1989a). Response to smoking-related stimuli and early relapse to smoking. Addictive Behaviors, 14, 419–428.CrossRefGoogle Scholar
  27. Niaura, R., Abrams, D., Monti, P., & Pedraza, M. (1989b). Reactivity to high risk situations and smoking outcome. Journal of Substance Abuse, 1, 393–405.Google Scholar
  28. Niaura, R., Rohsenow, D. J., Binnkoff, J. A., Monti, P. M., Pedrazza, M., & Abrams, D. B. (1988). Relevance of cue reactivity to understanding alcohol and smoking relapse. Journal of Abnormal Psychology, 97(2), 133–152.CrossRefPubMedGoogle Scholar
  29. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113.CrossRefPubMedGoogle Scholar
  30. Payne, T. J., Schare, M. L., Levis, D. J., & Colletti, G. (1991). Exposure to smoking-relevant cues: Effects in desire to smoke and topographical components of smoking behavior. Addictive Behavior, 16, 467–479.CrossRefGoogle Scholar
  31. Prokhorov, A. V., Koehly, L. M., Pallonen, U. E., & Hudmon, K. S. (1996). Adolescent nicotine dependence measured by the modified Fagerstrom tolerance questionnaire at two time points. Journal of Child and Adolescent substance Abuse, 7(4), 35–47.CrossRefGoogle Scholar
  32. Reiman, E. M. (1997). The application of positronemission tomography to the study of normal and phathologic emotions. Journal of Clinical Psychiatry, 58, 4–12.Google Scholar
  33. Rose, J. E., Behm, F. M., Westman, E. C., Mathew, R. J., London, E. D., Hawk, T. C., et al. (2003). PET studies of the influences of nicotine on neural systems in cigarette smokers. American Journal of Psychiatry, 160, 323–333.CrossRefPubMedGoogle Scholar
  34. Schneider, F., Habel, U., Wagner, M., Franke, P., Salloum, J. B., Shah, J., et al. (2001). Subcortical correlates of craving in recently abstinent alcoholic patients. American Journal of Psychiatry, 158, 1075–1083.CrossRefPubMedGoogle Scholar
  35. Stein, E., Pankiewicz, J., Harsch, H. H., Cho, J. K., Fuller, S. A., Hoffmann, R. G., et al. (1998). Nicotine-induced limbic cortical activation in the human brain: A functional MRI study. American Journal of Psychiatry, 155, 1009 –1015.PubMedGoogle Scholar
  36. Vogt, B. A., Finch, D. M., & Olson, C. R. (1992). Functional heterogeneity in cingualte cortex: The anterior executive and posterior evaluative regions. Cerebral Cortex, 2, 435–443.PubMedGoogle Scholar
  37. Wexler, B. E., Gottschalk, C. H., Fulbright, R. K., Prohovnik, I., Lacadie, C. M., Rounsaville, B. J., et al. (2001). Functional magnetic resonance imaging of cocaine craving. American Journal of Psychiatry, 158, 86–95.CrossRefPubMedGoogle Scholar
  38. Witmer, B. G., & Singer, M. J. (1998). Measuring presence in virtual environments: A presence questionnaire. Presence, 7(3), 225–240.CrossRefGoogle Scholar
  39. Zubieta, J., Lombardi, U., Minoshima, S., Guthrie, S., Ni, L., Ohl, L. E., et al. (2001). Regional cerebral blood flow effects of nicotine in overnight abstinent smokers. Biological Psychiatry, 49, 906–913.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Jang-Han Lee
    • 1
  • Youngsik Lim
    • 2
    Email author
  • Brenda K. Wiederhold
    • 3
  • Simon J. Graham
    • 4
    • 5
  1. 1.Department of PsychologyChung-Ang UniversitySeoulKorea
  2. 2.Department of Adolescent ScienceChung-Ang UniversitySeoulKorea
  3. 3.The Virtual Reality Medical CenterSan DiegoUSA
  4. 4.Imaging ResearchSunnybrook & Women’s College Health Science CentreTorontoCanada
  5. 5.Department of Medical BiophysicsUniversity of TorontoCanada

Personalised recommendations