Advertisement

Dynamic design of a nonlinear energy sink with NiTiNOL-steel wire ropes based on nonlinear output frequency response functions

  • Yewei Zhang
  • Kefan Xu
  • Jian Zang
  • Zhiyu Ni
  • Yunpeng Zhu
  • Liqun ChenEmail author
Article
  • 18 Downloads

Abstract

A novel vibration isolation device called the nonlinear energy sink (NES) with NiTiNOL-steel wire ropes (NiTi-ST) is applied to a whole-spacecraft system. The NiTi-ST is used to describe the damping of the NES, which is coupled with the modified Bouc-Wen model of hysteresis. The NES with NiTi-ST vibration reduction principle uses the irreversibility of targeted energy transfer (TET) to concentrate the energy locally on the nonlinear oscillator, and then dissipates it through damping in the NES with NiTi-ST. The generalized vibration transmissibility, obtained by the root mean square treatment of the harmonic response of the nonlinear output frequency response functions (NOFRFs), is first used as the evaluation index to analyze the whole-spacecraft system in the future. An optimization analysis of the impact of system responses is performed using different parameters of NES with NiTi-ST based on the transmissibility of NOFRFs. Finally, the effects of vibration suppression by varying the parameters of NiTi-ST are analyzed from the perspective of energy absorption. The results indicate that NES with NiTi-ST can reduce excessive vibration of the whole-spacecraft system, without changing its natural frequency. Moreover, the NES with NiTi-ST can be directly used in practical engineering applications.

Key words

nonlinear energy sink (NES) vibration isolation NiTiNOL-steel wire rope 

Chinese Library Classification

O322 

2010 Mathematics Subject Classification

74H45 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    REMEDIA, M., AGLIETTI, G. S., and RICHARDSON, G. Modelling the effect of electrical harness on microvibration response of structures. Acta Astronautica, 109, 88–102 (2015)CrossRefGoogle Scholar
  2. [2]
    WILKE, P. S., JOHNSON, C. D., and FOSNESS, E. R. Payload isolation system for launch vehicles. Proceedings of SPIE—The International Society for Optical Engineering, 3045, 20–30 (1997)Google Scholar
  3. [3]
    JOHNSON, C. D. and WILKE, P. S. Protecting satellites from the dynamics of the launch environment. AIAA Space 2003 Conference and Exposition, American Institute of Aeronautics and Astronautics, Reston (2006)Google Scholar
  4. [4]
    WANG, X. and YANG, B. T. Transient vibration control using nonlinear convergence active vibration absorber for impulse excitation. Mechanical Systems and Signal Processing, 117, 425–436 (2019)CrossRefGoogle Scholar
  5. [5]
    YANG, X. D., AN, H. Z., QIAN, Y. J., ZHANG, W., and YAO, M. H. Elliptic motions and control of rotors suspending in active magnetic bearings. Journal of Computational and Nonlinear Dynamics, 11, 5 (2016)Google Scholar
  6. [6]
    SALVI, J., RIZZI, E., and RUSTIGHI, E. Optimum tuning of passive tuned mass dampers for the mitigation of pulse-like responses. Journal of Vibration and Acoustics, 140(6), 061014 (2018)CrossRefGoogle Scholar
  7. [7]
    TAKEZAWA, A., MAKIHARA, K., and KOGISO, N. Layout optimization methodology of piezoelectric transducers in energy-recycling semi-active vibration control systems. Journal of Sound and Vibration, 333, 327–344 (2014)CrossRefGoogle Scholar
  8. [8]
    GUO, Z. K., YANG, X. D., and ZHANG, W. Dynamic analysis, active and passive vibration control of double-layer hourglass lattice truss structures. Journal of Sandwich Structures and Materials (2018) https://doi.org/10.1177/1099636218784339 Google Scholar
  9. [9]
    DING, H., ZHU, M. H., and CHEN, L. Q. Dynamic stiffness method for free vibration of an axially moving beam with generalized boundary conditions. Applied Mathematics and Mechanics (English Edition), 40(7), 911–924 (2019) https://doi.org/10.1007/s10483-019-2493-8 MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    LU, Z. Q., LI, K., DING, H., and CHEN, L. Q. Nonlinear energy harvesting based on a modified snap-through mechanism. Applied Mathematics and Mechanics (English Edition), 40(1), 167–180 (2018) https://doi.org/10.1007/s10483-019-2408-9 MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    LIU, C. C. and JING, X. J. Nonlinear vibration energy harvesting with adjustable stiffness, damping and inertia. Nonlinear Dynamics, 88(1), 79–95 (2017)MathSciNetCrossRefGoogle Scholar
  12. [12]
    SIAMI, A., KARIMI, H. R., and CIGADA, A. Parameter optimization of an inerter-based isolator for passive vibration control of Michelangelo’s Rondanini Pietà. Mechanical Systems and Signal Processing, 98, 667–683 (2018)CrossRefGoogle Scholar
  13. [13]
    DING, H. Steady-state responses of a belt-drive dynamical system under dual excitations. Acta Mechanica Sinica, 32(1), 156–169 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    DING, H., HUANG, L. L., MAO, X. Y., and CHEN, L. Q. Dynamic stiffness method for free vibration of an axially moving beam with generalized boundary conditions. Applied Mathematics and Mechanics (English Edition), 38(1), 1–14 (2017) https://doi.org/10.1007/s10483-016-2152-6 MathSciNetCrossRefGoogle Scholar
  15. [15]
    SUN, L. L., HANSEN, C. H., and DOOLAN, C. Evaluation of the performance of a passive-active vibration isolation system. Mechanical Systems and Signal Processing, 50-51, 480–497 (2015)CrossRefGoogle Scholar
  16. [16]
    DING, H. and ZU, J. W. Effect of one-way clutch on the nonlinear vibration of belt-drive systems with a continuous belt model. Journal of Sound and Vibration, 332(24), 6472–6487 (2013)CrossRefGoogle Scholar
  17. [17]
    YANG, K., ZHANG, Y. W., DING, H., YANG, T. Z., LI, Y., and CHEN, L. Q. Nonlinear energy sink for whole-spacecraft vibration reduction. Journal of Vibration and Acoustics, 139(2), 021011 (2017)CrossRefGoogle Scholar
  18. [18]
    VAKAKIS, A. F. Inducing passive nonlinear energy sinks in vibrating systems. Journal of Vibration and Acoustics, 123(3), 324–332 (2001)CrossRefGoogle Scholar
  19. [19]
    VAKAKIS, A. F. Shock isolation through the use of nonlinear energy sinks. Journal of Vibration and Control, 9(1/2), 79–93 (2003)zbMATHCrossRefGoogle Scholar
  20. [20]
    MOTATO, E., HARIS, A., THEODOSSIADES, S., MOHAMMADPOUR, M., RAHNEJAT, H., KELLY, P., VAKAKIS, A. F., MCFARLAND, D. M., and BERGMAN, L. A. Targeted energy transfer and modal energy redistribution in automotive drivetrains. Nonlinear Dynamics, 87(1), 169–190 (2016)CrossRefGoogle Scholar
  21. [21]
    STAROSVETSKY, Y. and GENDELMAN, O. V. Response regimes of linear oscillator coupled to nonlinear energy sink with harmonic forcing and frequency detuning. Journal of Sound and Vibration, 315(3), 746–765 (2008)CrossRefGoogle Scholar
  22. [22]
    ZANG, J., ZHANG, Y. W., DING, H., YANG, T. Z., and CHEN, L. Q. The evaluation of a nonlinear energy sink absorber based on the transmissibility. Mechanical Systems and Signal Processing, 125, 99–122 (2019)CrossRefGoogle Scholar
  23. [23]
    HUBBARD, S. A., MCFARLAND, D. M., BERGMAN, L. A., and VAKAKIS, A. F. Targeted energy transfer between a model flexible wing and nonlinear energy sink. Journal of Aircraft, 47(6), 1918–1931 (2010)CrossRefGoogle Scholar
  24. [24]
    HARIS, A., MOTATO, E., MOHAMMADPOUR, M., THEODOSSIADES, S., RAHNEJAT, H., MAHONY, M. O’., VAKAKIS, A. F., BERGMAN, L. A., and MCFARL, D. M. On the effect of multiple parallel nonlinear absorbers in palliation of torsional response of automotive drivetrain. International Journal of Non-Linear Mechanics, 96, 22–35 (2017)CrossRefGoogle Scholar
  25. [25]
    LI, X., ZHANG, Y. W., DING, H., and CHEN, L. Q. Integration of a nonlinear energy sink and a piezoelectric energy harvester. Applied Mathematics and Mechanics (English Edition), 38(7), 1019–1030 (2017) https://doi.org/10.1007/s10483-017-2220-6 MathSciNetCrossRefGoogle Scholar
  26. [26]
    CHEN, J. E., ZHANG, W., YAO, M. H., LIU, J., and SUN, M. Vibration reduction in truss core sandwich plate with internal nonlinear energy sink. Composite Structures, 193, 180–188 (2018)CrossRefGoogle Scholar
  27. [27]
    YANG, T. Z., LIU, T., TANG, Y., HOU, S., and LV, X. F. Enhanced targeted energy transfer for adaptive vibration suppression of pipes conveying fluid. Nonlinear Dynamics, 97, 1937–1944 (2019)CrossRefGoogle Scholar
  28. [28]
    ZANG, J. and CHEN, L. Q. Complex dynamics of a harmonically excited structure coupled with a nonlinear energy sink. Acta Mechanica Sinica, 33(4), 801–822 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    ZANG, J., YUAN, T. C., LU, Z. Q., ZHANG, Y. W., DING, H., and CHEN, L. Q. A lever-type nonlinear energy sink. Journal of Sound and Vibration, 437, 119–134 (2018)CrossRefGoogle Scholar
  30. [30]
    ZHANG, Y. W., LU, Y. N., ZHANG, W., TENG, Y. Y., YANG, H. X., YANG, T. Z., and CHEN, L. Q. Nonlinear energy sink with inerter. Mechanical Systems and Signal Processing, 125, 52–64 (2019)CrossRefGoogle Scholar
  31. [31]
    CHEN, J. E., HE, W., ZHANG, W., YAO, M. H., LIU, J., and SUN, M. Vibration suppression and higher branch responses of beam with parallel nonlinear energy sinks. Nonlinear Dynamics, 91(2), 885–904 (2018)CrossRefGoogle Scholar
  32. [32]
    LAMARQUE, C. H. and SAVADKOOHI, A. T. Dynamical behavior of a Bouc-Wen type oscillator coupled to a nonlinear energy sink. Meccanica, 49(8), 1917–1928 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    BOUC, R. Forced vibration of mechanical systems with hysteresis. Proceedings of the Fourth Conference on Nonlinear Oscillation, Academic, Prague (1967)Google Scholar
  34. [34]
    BOUC, R. Modle mathmatique d’hystrsis. Acustica, 21, 16–25 (1971)Google Scholar
  35. [35]
    WEN, Y. K. Method for random vibration of hysteretic systems. Journal of the Engineering Mechanics, 102(2), 246–263 (1976)Google Scholar
  36. [36]
    GIANDOMENICO, D. M., STEFANO, P., and SALVATORE, S. Cabinet and shelter vibration isolation: numerical and experimental investigation. Engineering Letters, 22(4), 149–157 (2014)Google Scholar
  37. [37]
    CARBONI, B. and LACARBONARA, W. A new vibration absorber based on the hysteresis of multi-configuration NiTiNOL-steel wire ropes assemblies. MATEC Web of Conferences, 16, 01004 (2014)CrossRefGoogle Scholar
  38. [38]
    CARBONI, B., LACARBONARA, W., and AURICCHIO, F. Hysteresis of multiconfiguration assemblies of nitinol and steel strands: experiments and phenomenological identification. Journal of Engineering Mechanics, 141(3), 04014135 (2015)CrossRefGoogle Scholar
  39. [39]
    BREWICK, P. T., MASRI, S. F., CARBONI, B., and LACARBONARA, W. Data-based nonlinear identification and constitutive modeling of hysteresis in NiTiNOL and steel strands. Journal of Engineering Mechanics, 142(12), 04016107 (2016)CrossRefGoogle Scholar
  40. [40]
    CARBONI, B. and LACARBONARA, W. Nonlinear dynamic characterization of a new hysteretic device: experiments and computations. Nonlinear Dynamics, 83(1/2), 23–39 (2016)CrossRefGoogle Scholar
  41. [41]
    VOLTERRA, V. Theory of Functionals and of Integral and Integro-Differential Equations, Dover, New York (1932)Google Scholar
  42. [42]
    GEORGE, D. Continuous Nonlinear Systems, MIT RLE Technical Report, U. S. A. (1959)Google Scholar
  43. [43]
    LANG, Z. Q. and BILLINGS, S. A. Energy transfer properties of non-linear systems in the frequency domain. International Journal of Control, 78(5), 345–362 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  44. [44]
    PENG, Z. K., LANG, Z. Q., and BILLINGS, S. A. Linear parameter estimation for multi-degree-of-freedom nonlinear systems using nonlinear output frequency-response functions. Mechanical Systems and Signal Processing, 21(8), 3108–3122 (2007)CrossRefGoogle Scholar
  45. [45]
    PENG, Z. K., LANG, Z. Q., and CHU, F. L. Numerical analysis of cracked beams using nonlinear output frequency response functions. Computers and Structures, 86(17/18), 1809–1818 (2008)CrossRefGoogle Scholar
  46. [46]
    PENG, Z. K., LANG, Z. Q., WOLTERS, C., and BILLINGS, S. A. Feasibility study of structural damage detection using NARMAX modelling and nonlinear output frequency response function based analysis. Mechanical Systems and Signal Processing, 25(3), 1045–1061 (2011)CrossRefGoogle Scholar
  47. [47]
    PENG, Z. K., LANG, Z. Q., and BILLINGS, S. A. Nonlinear parameter estimation for multi-degree-of-freedom nonlinear systems using nonlinear output frequency-response functions. Mechanical Systems and Signal Processing, 22(7), 1582–1594 (2008)CrossRefGoogle Scholar
  48. [48]
    BAYMA, R. S., ZHU, Y. P., and LANG, Z. Q. The analysis of nonlinear systems in the frequency domain using nonlinear output frequency response functions. Automatica, 94, 452–457 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    YANG, K., ZHANG, Y. W., DING, H., and CHEN, L. Q. The transmissibility of nonlinear energy sink based on nonlinear output frequency-response functions. Communications in Nonlinear Science and Numerical Simulation, 44, 184–192 (2017)MathSciNetCrossRefGoogle Scholar
  50. [50]
    PENG, Z. K., LANG, Z. Q., BILLINGS, S. A., and TOMLISON, G. R. Comparisons between harmonic balance and nonlinear output frequency response function in nonlinear system analysis. Journal of Sound and Vibration, 311(1), 56–73 (2008)CrossRefGoogle Scholar
  51. [51]
    CARBONI, B. and LACARBONARA, W. Nonlinear vibration absorber with pinched hysteresis: theory and experiments. Journal of Engineering Mechanics, 142(5), 04016023 (2016)CrossRefGoogle Scholar
  52. [52]
    LANG, Z. Q. and BILLINGS, S. A. Output frequency characteristics of nonlinear system. International Journal of Control, 64(6), 1049–1067 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  53. [53]
    PENG, Z. K., LANG, Z. Q., and BILLINGS, S. A. Resonances and resonant frequencies for a class of nonlinear systems. Journal of Sound and Vibration, 300(3-5), 993–1014 (2007)CrossRefGoogle Scholar
  54. [54]
    BILLINGS, S. A. and JONES, J. C. Mapping non-linear integro-differential equations into the frequency domain. International Journal of Control, 52(4), 863–879 (1990)zbMATHCrossRefGoogle Scholar
  55. [55]
    FANG, Z. W., ZHANG, Y. W., LI, X., DING, H., and CHEN, L. Q. Integration of a nonlinear energy sink and a giant magnetostrictive energy harvester. Journal of Sound and Vibration, 391, 35–49 (2017)CrossRefGoogle Scholar
  56. [56]
    FANG, Z. W., ZHANG, Y. W., LI, X., DING, H., and CHEN, L. Q. Complexification-averaging analysis on a giant magnetostrictive harvester integrated with a nonlinear energy sink. Journal of Vibration and Acoustics, 140(2), 021009 (2017)CrossRefGoogle Scholar
  57. [57]
    CARBONI, B. and LACARBONARA, W. Nonlinear vibration absorber with pinched hysteresis: theory and experiments. Journal of Engineering Mechanics, 142(5), 04016023 (2016)CrossRefGoogle Scholar
  58. [58]
    TSIATAS, G. C. and CHARALAMPAKIS, A. E. A new hysteretic nonlinear energy sink (HNES). Communications in Nonlinear Science and Numerical Simulation, 60, 1–11 (2018)CrossRefGoogle Scholar

Copyright information

© Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yewei Zhang
    • 1
  • Kefan Xu
    • 1
  • Jian Zang
    • 1
  • Zhiyu Ni
    • 1
  • Yunpeng Zhu
    • 2
  • Liqun Chen
    • 3
    • 4
    • 5
    Email author
  1. 1.College of Aerospace EngineeringShenyang Aerospace UniversityShenyangChina
  2. 2.Department of Automatic Control and Systems EngineeringSheffield UniversitySheffieldUK
  3. 3.Shanghai Institute of Applied Mathematics and MechanicsShanghai UniversityShanghaiChina
  4. 4.School of Mechanics and Engineering ScienceShanghai UniversityShanghaiChina
  5. 5.Shanghai Key Laboratory of Mechanics in Energy EngineeringShanghai UniversityShanghaiChina

Personalised recommendations