Applied Mathematics and Mechanics

, Volume 40, Issue 5, pp 737–750 | Cite as

Study on the packed volume-to-void ratio of idealized human red blood cells using a finite-discrete element method

  • Dong Xu
  • Chunning JiEmail author
  • A. Munjiza
  • E. Kaliviotis
  • E. Avital
  • J. Willams


Numerical simulations are performed to examine the packing behavior of human red blood cells (RBCs). A combined finite-discrete element method (FDEM) is utilized, in which the RBCs are modeled as no-friction and no-adhesion solid bodies. The volume-to-void ratio of a large number of randomly packed RBCs is clarified, and the effects of the RBC shape, the mesh size, the cell number, and the container size are investigated. The results show that the packed human RBCs with normal shape have a void ratio of 28.45%, which is slightly higher than that of the flat or thick cells used in this study. Such information is beneficial to the further understanding on the geometric features of human RBCs and the research on RBC simulations.

Key words

red blood cell (RBC) void ratio packed volume discrete element method 

Chinese Library Classification


2010 Mathematics Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BASKURT, O. K. Handbook of Hemorheology and Hemodynamics, IOS Press, Inc., Virginia (2007)Google Scholar
  2. [2]
    XU, D., KALIVIOTIS, E., MUNJIZA, A., AVITAL, E., JI, C. N., and WILLIAMS, J. Large scale simulation of red blood cell aggregation in shear flows. Journal of Biomechanics, 46, 1810–1817 (2013)CrossRefGoogle Scholar
  3. [3]
    AHMED, F., MEHRABADI, M., LIU, Z. X., BARABINO, G. A., and AIDUN, C. K. Internal viscosity-dependent margination of red blood cells in microfluidic channels. Journal of Biomechanical Engineering, 140, 061013 (2018)CrossRefGoogle Scholar
  4. [4]
    CHANG, H. Y., LI, X. J., and KARNIADAKIS, G. E. Modeling of biomechanics and biorheology of red blood cells in type 2 diabetes mellitus. Biophysical Journal, 113, 481–490 (2017)CrossRefGoogle Scholar
  5. [5]
    KABACAOGLU, G., QUAIFE, B., and BIROS, G. Low-resolution simulations of vesicle suspensions in 2D. Journal of Computational Physics, 357, 43–77 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    BALOGH, P. and BAGCHI, P. Direct numerical simulation of cellular-scale blood flow in 3D microvascular networks. Biophysical Journal, 113, 2815–2826 (2017)CrossRefGoogle Scholar
  7. [7]
    FEDOSOV, D. A., NOGUCHI, H., and GOMPPER, G. Multiscale modeling of blood flow: from single cells to blood rheology. Biomechanics and Modeling in Mechanobiology, 13, 239–258 (2014)CrossRefGoogle Scholar
  8. [8]
    FREUND, J. B. Numerical simulation of flowing blood cells. Annual Review of Fluid Mechanics, 46, 67–95 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    OMORI, T., HOSAKA, H., IMAI, Y., YAMAGUCHI, T., and ISHIKAWA, T. Numerical analysis of a red blood cell flowing through a thin micropore. Physical Review E, 89, 013008 (2014)CrossRefGoogle Scholar
  10. [10]
    YE, T., NHAN, P. T., KHOO, B. C., and LIM, C. T. A file of red blood cells in tube flow: a three-dimensional numerical study. Journal of Applied Physics, 116, 124703 (2014)CrossRefGoogle Scholar
  11. [11]
    FEDOSOV, D. A., CASWELL, B., and KARNIADAKIS, G. E. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophysical Journal, 98, 2215–2225 (2010)CrossRefGoogle Scholar
  12. [12]
    FEDOSOV, D. A., PAN, W. X., CASWELL, B., GOMPPER, G., and KARNIADAKIS, G. E. Predicting human blood viscosity in silico. Proceedings of the National Academy of Sciences of the United States of America, 108, 11772–11777 (2011)CrossRefGoogle Scholar
  13. [13]
    CHESNUTT, J. K. W. and MARSHALL, J. S. Blood cell transport and aggregation using discrete ellipsoidal particles. Computers and Fluids, 38, 1782–1794 (2009)CrossRefzbMATHGoogle Scholar
  14. [14]
    XU, D., JI, C., AVITAL, E., KALIVIOTIS, E., MUNJIZA, A., and WILLIAMS, J. An investigation on the aggregation and rheodynamics of human red blood cells using high performance computations. Scientifica, 2017, 6524156 (2017)CrossRefGoogle Scholar
  15. [15]
    YAZDANI, A. and KARNIADAKIS, G. E. Sub-cellular modeling of platelet transport in blood flow through microchannels with constriction. Soft Matter, 12, 4339–4351 (2016)CrossRefGoogle Scholar
  16. [16]
    LI, H., CHANG, H. Y., YANG, J., LU, L., TANG, Y. H., and LYKOTRAFITIS, G. Modeling biomembranes and red blood cells by coarse-grained particle methods. Applied Mathematics and Mechanics (English Edition), 39(1), 3–20 (2018) MathSciNetCrossRefGoogle Scholar
  17. [17]
    YE, H. L., SHEN, Z. Q., and LI, Y. Computational modeling of magnetic particle margination within blood flow through LAMMPS. Computational Mechanics, 62, 457–476 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    SPANN, A., CAMPBELL, J. E., FITZGIBBON, S. R., and RODRIGUEZ, A. The effect of hematocrit on platelet adhesion: experiments and simulations. Biophysical Journal, 111, 577–588 (2016)CrossRefGoogle Scholar
  19. [19]
    GEKLE, S. Strongly accelerated margination of active particles in blood flow. Biophysical Journal, 110, 514–520 (2016)CrossRefGoogle Scholar
  20. [20]
    GROEMER, H. Some basic properties of packing and covering constants. Discrete and Computational Geometry, 1, 183–193 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    DESMOND, K. W. and WEEKS, E. R. Random close packing of disks and spheres in confined geometries. Physical Review E, 80, 051305 (2009)CrossRefGoogle Scholar
  22. [22]
    DESMOND, K. W. and WEEKS, E. R. Influence of particle size distribution on random close packing of spheres. Physical Review E, 90, 022204 (2014)CrossRefGoogle Scholar
  23. [23]
    CAMENEN, J. F., DESCANTES, Y., and RICHARD, P. Effect of confinement on dense packings of rigid frictionless spheres and polyhedra. Physical Review E, 86, 061317 (2012)CrossRefGoogle Scholar
  24. [24]
    NAJAFI, J., STOOP, N., WITTEL, F., and HABIBI, M. Ordered packing of elastic wires in a sphere. Physical Review E, 85, 061108 (2012)CrossRefGoogle Scholar
  25. [25]
    HIHINASHVILI, R. and BLUMENFELD, R. Statistical-mechanical characteristics of dense planar granular systems. Granular Matter, 14, 277–282 (2012)CrossRefGoogle Scholar
  26. [26]
    KURITA, R. and WEEKS, E. R. Experimental study of random-close-packed colloidal particles. Physical Review E, 82, 030401 (2010)CrossRefGoogle Scholar
  27. [27]
    WANG, X. Z. Mean-field cage theory for the random close packed state of a metastable hard-sphere glass. Physica A: Statistical Mechanics and Its Applications, 391, 3566–3573 (2012)CrossRefGoogle Scholar
  28. [28]
    RITVANEN, J. and JALALI, P. On near-wall effects in hard disk packing between two concentric cylinders. Physica A: Statistical Mechanics and Its Applications, 387, 5381–5386 (2008)CrossRefGoogle Scholar
  29. [29]
    KURITA, R. and WEEKS, E. R. Incompressibility of polydisperse random-close-packed colloidal particles. Physical Review E, 84, 030401 (2011)CrossRefGoogle Scholar
  30. [30]
    MUNJIZA, A. and WILEY, J. The Combined Finite-Discrete Element Method, John Wiley & Sons, Ltd., New York (2004)CrossRefGoogle Scholar
  31. [31]
    MUNJIZA, A. A., KNIGHT, E. E., and ROUGIER, E. Computational Mechanics of Discontinua, John Wiley & Sons, Ltd., New York (2011)CrossRefGoogle Scholar
  32. [32]
    JI, C., MUNJIZA, A., AVITAL, E., MA, J., and WILLIAMS, J. J. R. Direct numerical simulation of sediment entrainment in turbulent channel flow. Physics of Fluids, 25, 056601 (2013)CrossRefGoogle Scholar
  33. [33]
    JI, C. N., ANTE, M., ELDAD, A., XU, D., and JOHN, W. Numerical investigation of particle saltation in the bed-load regime. Science China-Technological Sciences, 57, 1500–1511 (2014)CrossRefGoogle Scholar
  34. [34]
    JI, C. N., MUNJIZA, A., AVITAL, E., XU, D., and WILLIAMS, J. Saltation of particles in turbulent channel flow. Physical Review E, 89, 052202 (2014)CrossRefGoogle Scholar
  35. [35]
    DAO, M., LIM, C. T., and SURESH, S. Mechanics of the human red blood cell deformed by optical tweezers. Journal of the Mechanics and Physics of Solids, 51, 2259–2280 (2003)CrossRefGoogle Scholar
  36. [36]
    EVANS, E. and FUNG, Y. C. Improved measurements of the erythrocyte geometry. Microvascular Research, 4, 335–347 (1972)CrossRefGoogle Scholar
  37. [37]
    LIU, Y. L. and LIU, W. K. Rheology of red blood cell aggregation by computer simulation. Journal of Computational Physics, 220, 139–154 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    SUI, Y., CHEW, Y. T., and LOW, H. T. A lattice Boltzmann study on the large deformation of red blood cells in shear flow. International Journal of Modern Physics C, 18, 993–1011 (2007)CrossRefzbMATHGoogle Scholar
  39. [39]
    SUI, Y., CHEW, Y. T., ROY, P., CHENG, Y. P., and LOW, H. T. Dynamic motion of red blood cells in simple shear flow. Physics of Fluids, 20, 112106 (2008)CrossRefzbMATHGoogle Scholar
  40. [40]
    TANG, Y. H. and KARNIADAKIS, G. E. Accelerating dissipative particle dynamics simulations on GPUs: Algorithms, numerics and applications. Computer Physics Communications, 185, 2809–2822 (2014)MathSciNetCrossRefGoogle Scholar
  41. [41]
    DEULING, H. J. and HELFRICH, W. Red blood-cell shapes as explained on basis of curvature elasticity. Biophysical Journal, 16, 861–868 (1976)CrossRefGoogle Scholar
  42. [42]
    LEI, H. and KARNIADAKIS, G. E. Quantifying the rheological and hemodynamic characteristics of sickle cell anemia. Biophysical Journal, 102, 185–194 (2012)CrossRefGoogle Scholar
  43. [43]
    PARK, Y., BEST, C. A., BADIZADEGAN, K., DASARI, R. R., FELD, M. S., KURIABOVA, T., HENLE, M. L., LEVINE, A. J., and POPESCU, G. Measurement of red blood cell mechanics during morphological changes. Proceedings of the National Academy of Sciences of the United States of America, 107, 6731–6736 (2010)CrossRefGoogle Scholar
  44. [44]
    TRIPETTE, J., ALEXY, T., HARDY-DESSOURCES, M. D., MOUGENEL, D., BELTAN, E., CHALABI, T., CHOUT, R., ETIENNE-JULAN, M., HUE, O., MEISELMAN, H. J., and CONNES, P. Red blood cell aggregation, aggregate strength and oxygen transport potential of blood are abnormal in both homozygous sickle cell anemia and sickle-hemoglobin C disease. Haematologica-the Hematology Journal, 94, 1060–1065 (2009)CrossRefGoogle Scholar
  45. [45]
    DIEZ-SILVA, M., DAO, M., HAN, J. Y., LIM, C. T., and SURESH, S., Shape and biomechanical characteristics of human red blood cells in health and disease. Mrs Bulletin, 35, 382–388 (2010)CrossRefGoogle Scholar
  46. [46]
    MEHRABADI, M., KU, D. N., and AIDUN, C. K. Effects of shear rate, confinement, and particle parameters on margination in blood flow. Physical Review E, 93, 023109 (2016)CrossRefGoogle Scholar
  47. [47]
    LINDERKAMP, O., WU, P. Y. K., and MEISELMAN, H. J. Geometry of neonatal and adult red blood cells. Pediatric Research, 17, 250–253 (1983)CrossRefGoogle Scholar
  48. [48]
    TOMAIUOLO, G. Biomechanical properties of red blood cells in health and disease towards microfluidics. Biomicrofluidics, 8, 051501 (2014)CrossRefGoogle Scholar
  49. [49]
    HARIPRASAD, D. S. and SECOMB, T. W. Motion of red blood cells near microvessel walls: effects of a porous wall layer. Journal of Fluid Mechanics, 705, 195–212 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    GUCKENBERGER, A., SCHRAML, M. P., CHEN, P. G., LEONETTI, M., and GEKLE, S. On the bending algorithms for soft objects in flows. Computer Physics Communications, 207, 1–23 (2016)CrossRefzbMATHGoogle Scholar

Copyright information

© Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Dong Xu
    • 1
  • Chunning Ji
    • 1
    Email author
  • A. Munjiza
    • 2
  • E. Kaliviotis
    • 3
  • E. Avital
    • 2
  • J. Willams
    • 1
    • 2
  1. 1.State Key Laboratory of Hydraulic Engineering Simulation and SafetyTianjin UniversityTianjinChina
  2. 2.School of Engineering & Material ScienceQueen Mary University of LondonLondonUK
  3. 3.Faculty of Engineering and TechnologyCyprus University of TechnologyLimassolCyprus

Personalised recommendations