Applied Mathematics and Mechanics

, Volume 39, Issue 1, pp 31–46 | Cite as

Discussions on the correspondence of dissipative particle dynamics and Langevin dynamics at small scales

  • D. Azarnykh
  • S. Litvinov
  • X. Bian
  • N. A. Adams


We investigate the behavior of dissipative particle dynamics (DPD) within different scaling regimes by numerical simulations. The paper extends earlier analytical findings of Ripoll, M., Ernst, M. H., and Espa˜nol, P. (Large scale and mesoscopic hydrodynamics for dissipative particle dynamics. Journal of Chemical Physics, 115(15), 7271–7281 (2001)) by evaluation of numerical data for the particle and collective scaling regimes and the four different subregimes. DPD simulations are performed for a range of dynamic overlapping parameters. Based on analyses of the current auto-correlation functions (CACFs), we demonstrate that within the particle regime at scales smaller than its force cut-off radius, DPD follows Langevin dynamics. For the collective regime, we show that the small-scale behavior of DPD differs from Langevin dynamics. For the wavenumber-dependent effective shear viscosity, universal scaling regimes are observed in the microscopic and mesoscopic wavenumber ranges over the considered range of dynamic overlapping parameters.

Key words

dissipative particle dynamics (DPD) mesoscopic dynamics fluctuating hydrodynamics 

Chinese Library Classification


2010 Mathematics Subject Classification

82-08 82C31 76M28 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The first author acknowledges travel support from the Technical University of Munich (TUM) Graduate School. We thank the Munich Center of Advanced Computing for providing computational resources. We thank V. BOGDANOV for proofreading.


  1. [1]
    Landau, L. D. and Lifshitz, E. M. Fluid Mechanics, 1st ed., Pergamon Press, Oxford (1959)zbMATHGoogle Scholar
  2. [2]
    Hoogerbrugge, P. J. and Koelman, J. M. V. A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhysics Letters, 19(3), 155–160 (1992)CrossRefGoogle Scholar
  3. [3]
    Espa˜nol, P. and Warren, P. Statistical mechanics of dissipative particle dynamics. Europhysics Letters, 30(4), 191–196 (1995)CrossRefGoogle Scholar
  4. [4]
    Groot, R. D. and Warren, P. B. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. Journal of Chemical Physics, 107(11), 4423–4435 (1997)CrossRefGoogle Scholar
  5. [5]
    Pan, W., Caswell, B., and Karniadakis, G. E. Rheology, microstructure and migration in Brownian colloidal suspensions. Langmuir, 26(1), 133–142 (2010)CrossRefGoogle Scholar
  6. [6]
    Fedosov, D. A., Caswell, B., and Karniadakis, G. E. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophysical Journal, 98(10), 2215–2225 (2010)CrossRefGoogle Scholar
  7. [7]
    Hijón, C., Espa˜nol, P., Vanden-Eijnden, E., and Delgado-Buscalioni, R. Mori-Zwanzig formalism as a practical computational tool. Faraday Discussions, 144, 301–322 (2010)CrossRefGoogle Scholar
  8. [8]
    Li, Z., Bian, X., Li, X., and Karniadakis, G. E. Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism. Journal of Chemical Physics, 143(24), 243128 (2015)CrossRefGoogle Scholar
  9. [9]
    Mori, H. Transport, collective motion, and Brownian motion. Progress of Theoretical Physics, 33(3), 423–455 (1965)CrossRefzbMATHGoogle Scholar
  10. [10]
    Zwanzig, R. Ensemble method in the theory of irreversibility. Journal of Chemical Physics, 33(5), 1338–1341 (1960)MathSciNetCrossRefGoogle Scholar
  11. [11]
    Espa˜nol, P. and Warren, P. B. Perspective: dissipative particle dynamics. Journal of Chemical Physics, 146(15), 150901 (2017)CrossRefGoogle Scholar
  12. [12]
    Marsh, C., Backx, G., and Ernst, M. H. Static and dynamic properties of dissipative particle dynamics. Physical Review E, 56(2), 1676–1691 (1997)CrossRefGoogle Scholar
  13. [13]
    Marsh, C. Theoretical Aspects of Dissipative Particle Dynamics, Ph.D. dissertation, University of Oxford (1998)Google Scholar
  14. [14]
    Ripoll, M., Ernst, M. H., and Espa˜nol, P. Large scale and mesoscopic hydrodynamics for dissipative particle dynamics. Journal of Chemical Physics, 115(15), 7271–7284 (2001)CrossRefGoogle Scholar
  15. [15]
    Espa˜nol, P. and Revenga, M. Smoothed dissipative particle dynamics. Physical Review E, 67(2), 026705 (2003)CrossRefGoogle Scholar
  16. [16]
    Lucy, L. B. A numerical approach to the testing of the fission hypothesis. Astronomical Journal, 82, 1013–1024 (1977)CrossRefGoogle Scholar
  17. [17]
    Gingold, R. A. and Monaghan, J. J. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 181(3), 375–389 (1977)CrossRefzbMATHGoogle Scholar
  18. [18]
    Öttinger, H. C. and Grmela, M. Dynamics and thermodynamics of complex fluids, II, illustrations of a general formalism. Physical Review E, 56(6), 6633–6655 (1997)MathSciNetCrossRefGoogle Scholar
  19. [19]
    Henry, E., Holm, S. H., Zhang, Z., Beech, J. P., Tegenfeldt, J. O., Fedosov, D. A., and Gompper, G. Sorting cells by their dynamical properties. Scientific Reports, 6, 34375 (2016)CrossRefGoogle Scholar
  20. [20]
    Bian, X., Litvinov, S., Qian, R., Ellero, M., and Adams, N. A. Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics. Physics of Fluids (1994-present), 24(1), 012002 (2012)CrossRefGoogle Scholar
  21. [21]
    Litvinov, S., Ellero, M., Hu, X., and Adams, N. A. Smoothed dissipative particle dynamics model for polymer molecules in suspension. Physical Review E, 77(6), 066703 (2008)CrossRefGoogle Scholar
  22. [22]
    Vázquez-Quesada, A., Ellero, M., and Espa˜nol, P. Smoothed particle hydrodynamic model for viscoelastic fluids with thermal fluctuations. Physical Review E, 79(5), 056707 (2009)MathSciNetCrossRefGoogle Scholar
  23. [23]
    Kulkarni, P. M., Fu, C. C., Shell, M. S., and Leal, L. G. Multiscale modeling with smoothed dissipative particle dynamics. Journal of Chemical Physics, 138(23), 234105 (2013)CrossRefGoogle Scholar
  24. [24]
    Lei, H., Mundy, C. J., Schenter, G. K., and Voulgarakis, N. K. Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics. Journal of Chemical Physics, 142(19), 194504 (2015)CrossRefGoogle Scholar
  25. [25]
    Soddemann, T., Dünweg, B., and Kremer, K. Dissipative particle dynamics: a useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. Physical Review E, 68(4), 046702 (2003)CrossRefGoogle Scholar
  26. [26]
    Yong, X. and Zhang, L. T. Thermostats and thermostat strategies for molecular dynamics simulations of nanofluidics. Journal of Chemical Physics, 138(8), 084503 (2013)CrossRefGoogle Scholar
  27. [27]
    Junghans, C., Praprotnik, M., and Kremer, K. Transport properties controlled by a thermostat: an extended dissipative particle dynamics thermostat. Physical Review E, 4(1), 156–161 (2007)Google Scholar
  28. [28]
    Espa˜nol, P. and Serrano, M. Dynamical regimes in the dissipative particle dynamics model. Physical Review E, 59(6), 6340–6347 (1999)CrossRefGoogle Scholar
  29. [29]
    Haworth, D. C. and Pope, S. B. A generalized Langevin model for turbulent flows. Physics of Fluids, 29(2), 387–405 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    Jenny, P., Torrilhon, M., and Heinz, S. A solution algorithm for the fluid dynamic equations based on a stochastic model for molecular motion. Journal of Computational Physics, 229(4), 1077–1098 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    Boon, J. P. and Yip, S. Molecular Hydrodynamics, Dover Publications, New York (1992)Google Scholar
  32. [32]
    Palmer, B. J. Transverse-current autocorrelation-function calculations of the shear viscosity for molecular liquids. Physical Review E, 49(1), 359–366 (1994)CrossRefGoogle Scholar
  33. [33]
    Azarnykh, D., Litvinov, S., Bian, X., and Adams, N. A. Determination of macroscopic transport coefficients of a dissipative particle dynamics solvent. Physical Review E, 93(1), 013302 (2016)CrossRefGoogle Scholar
  34. [34]
    De Fabritiis, G., Serrano, M., Delgado-Buscalioni, R., and Coveney, P. V. Fluctuating hydrodynamic modeling of fluids at the nanoscale. Physical Review E, 75(2), 026307 (2007)CrossRefGoogle Scholar
  35. [35]
    Bell, J. B., Garcia, A. L., and Williams, S. A. Numerical methods for the stochastic Landau- Lifshitz Navier-Stokes equations. Physical Review E, 76(1), 016708 (2007)MathSciNetCrossRefGoogle Scholar
  36. [36]
    Bian, X., Deng, M., Tang, Y. H., and Karniadakis, G. E. Analysis of hydrodynamic fluctuations in heterogeneous adjacent multidomains in shear flow. Physical Review E, 93(3), 033312 (2016)MathSciNetCrossRefGoogle Scholar
  37. [37]
    Bian, X., Deng, M., and Karniadakis, G. E. Analytical and computational studies of correlations of hydrodynamic fluctuations in shear flow. Computer Physics Communications, 23(1), 93–117 (2018)Google Scholar
  38. [38]
    Huang, C. C., Gompper, G., and Winkler, R. G. Hydrodynamic correlations in multiparticle collision dynamics fluids. Physical Review E, 86(5), 056711 (2012)CrossRefGoogle Scholar
  39. [39]
    Varghese, A., Huang, C. C., Winkler, R. G., and Gompper, G. Hydrodynamic correlations in shear flow: multiparticle-collision-dynamics simulation study. Physical Review E, 92(5), 053002 (2015)MathSciNetCrossRefGoogle Scholar
  40. [40]
    Onsager, L. Reciprocal relations in irreversible processes, I. Physical Review, 37(4), 405–426 (1931)CrossRefzbMATHGoogle Scholar
  41. [41]
    Berne, B. J. and Pecora, R. Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics, Dover Publications, New York (2000)Google Scholar
  42. [42]
    Langevin, P. Sur la théorie du mouvement brownien. Comptes Rendus de l’Académie des Sciences (Paris), 146, 530–533 (1908)zbMATHGoogle Scholar
  43. [43]
    Chandrasekhar, S. Stochastic problems in physics and astronomy. Reviews of Modern Physics, 15(1), 1–89 (1943)MathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    Bian, X., Kim, C., and Karniadakis, G. E. 111 years of Brownian motion. Soft Matter, 12(30), 6331–6346 (2016)CrossRefGoogle Scholar
  45. [45]
    Gorji, M. H., Torrilhon, M., and Jenny, P. Fokker-Planck model for computational studies of monatomic rarefied gas flows. Journal of Fluid Mechanics, 680, 574–601 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    Beresnev, S. A., Chernyak, V. G., and Fomyagin, G. A. Motion of a spherical particle in a rarefied gas, part 2, drag and thermal polarization. Journal of Fluid Mechanics, 219, 405–421 (1990)CrossRefzbMATHGoogle Scholar
  47. [47]
    Li, T. and Raizen, M. G. Brownian motion at short time scales. Annalen der Physik, 525(4), 281–295 (2013)CrossRefGoogle Scholar
  48. [48]
    Hickel, S., Adams, N. A., and Domaradzki, J. A. An adaptive local deconvolution method for implicit LES. Journal of Computational Physics, 213(1), 413–436 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    Schranner, F. S., Hu, X., and Adams, N. A. A physically consistent weakly compressible highresolution approach to underresolved simulations of incompressible flows. Computers and Fluids, 86, 109–124 (2013)MathSciNetCrossRefGoogle Scholar
  50. [50]
    Wang, P., Tartakovsky, A. M., and Tartakovsky, D. M. Probability density function method for Langevin equations with colored noise. Physical Review Letters, 110(14), 140602 (2013)CrossRefGoogle Scholar
  51. [51]
    Azarnykh, D., Litvinov, S., and Adams, N. A. Numerical methods for the weakly compressible generalized Langevin model in Eulerian reference frame. Journal of Computational Physics, 314, 93–106 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    McLennan, J. A. Correlation functions for dilute systems. Physics of Fluids (1958-1988), 9(8), 1581–1589 (1966)CrossRefzbMATHGoogle Scholar

Copyright information

© Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • D. Azarnykh
    • 1
  • S. Litvinov
    • 2
  • X. Bian
    • 1
  • N. A. Adams
    • 1
  1. 1.Chair of Aerodynamics and Fluid Mechanics, Department of Mechanical EngineeringTechnical University of MunichMünchenGermany
  2. 2.Chair of Computational ScienceEidgenössische Technische Hochschule ZürichZurichSwitzerland

Personalised recommendations