Advertisement

Applied Mathematics and Mechanics

, Volume 39, Issue 1, pp 103–124 | Cite as

Everything you always wanted to know about SDPD (but were afraid to ask)

  • M. Ellero
  • P. Español
Open Access
Article

Abstract

An overview of the smoothed dissipative particle dynamics (SDPD) method is presented in a format that tries to quickly answer questions that often arise among users and newcomers. It is hoped that the status of SDPD is clarified as a mesoscopic particle model and its potentials and limitations are highlighted, as compared with other methods.

Key words

mesoscopic particle method dissipative particle dynamics (DPD) smoothed particle hydrodynamics (SPH) complex fluid 

Chinese Library Classification

O357.3 

2010 Mathematics Subject Classification

74A25 376A05 76A10 74S60 

References

  1. [1]
    Espa˜nol, P. and Revenga, M. Smoothed dissipative particle dynamics. Physical Review E, 67, 02675 (2003)Google Scholar
  2. [2]
    Hoogerbrugge, P. J. and Koelman, J. M. V. A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhysics Letters, 19, 155 (1992)CrossRefGoogle Scholar
  3. [3]
    Espa˜nol, P. and Warren, P. Statistical mechanics of dissipative particle dynamics. Europhysics Letters, 30, 191 (1995)CrossRefGoogle Scholar
  4. [4]
    Espa˜nol, P. and Warren, P. B. Perspective: dissipative particle dynamics. The Journal of Chemical Physics, 146, 1–166 (2017)Google Scholar
  5. [5]
    Fan, X. J., Phan-Thien, N., Chen, S., Wu, X. H., and Ng, T. Y. Simulating flow of DNA suspension using dissipative particle dynamics. Physics of Fluids, 18, 063102 (2006)zbMATHCrossRefGoogle Scholar
  6. [6]
    Lei, H., Mundy, C. J., Schenter, G. K., and Voulgarakis, N. K. Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics. The Journal of Chemical Physics, 142, 194504 (2015)CrossRefGoogle Scholar
  7. [7]
    Bian, X., Litvinov, S., Qian, R., Ellero, M., and Adams, N. A. Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics. Physics of Fluids, 24, 12002 (2012)CrossRefGoogle Scholar
  8. [8]
    Vázquez-Quesada, A., Bian, X., and Ellero, M. Three-dimensional simulations of dilute and concentrated suspensions using smoothed particle hydrodynamics. Computational Particle Mechanics, 3, 167–178 (2015)CrossRefGoogle Scholar
  9. [9]
    Moreno, N., Vignal, P., Li, J., and Calo, V. M. Multiscale modeling of blood flow: coupling finite elements with smoothed dissipative particle dynamics. Procedia Computer Science, 18, 2565–2574 (2013)CrossRefGoogle Scholar
  10. [10]
    Müller, K., Fedosov, D. A., and Gompper, G. Margination of micro- and nanoparticles in blood flow and its effect on drug delivery. Scientific Reports, 4, 4871 (2014)CrossRefGoogle Scholar
  11. [11]
    Litvinov, S., Hu, X. Y., and Adams, N. A. Numerical simulation of tethered DNA in shear flow. Journal of Physics: Condensed Matter, 23, 184118 (2011)Google Scholar
  12. [12]
    Litvinov, S., Ellero, M., Hu, X. Y., and Adams, N. A. Smoothed dissipative particle dynamics model for polymer molecules in suspension. Physical Review E, 77, 6703 (2008)CrossRefGoogle Scholar
  13. [13]
    Litvinov, S., Ellero, M., Hu, X. Y., and Adams, N. A. A splitting scheme for highly dissipative smoothed particle dynamics. Journal of Computational Physics, 229, 5457–5464, (2010)zbMATHCrossRefGoogle Scholar
  14. [14]
    Litvinov, S., Xie, Q. G., Hu, X. Y., Adams, N. A., and Ellero, M. Simulation of individual polymer chains and polymer solutions with smoothed dissipative particle dynamics. Fluids, 1, 7 (2016)CrossRefGoogle Scholar
  15. [15]
    Thieulot, C. A. P., Janssen, L., and Espa˜nol, P. Smoothed particle hydrodynamics model for phase separating fluid mixtures, I: general equations. Physical Review E, 72, 016713 (2005)MathSciNetCrossRefGoogle Scholar
  16. [16]
    Thieulot, C. A. P., Janssen, L., and Espa˜nol, P. Smoothed particle hydrodynamics model for phase separating fluid mixtures, II: diffusion in a binary mixture. Physical Review E, 72, 016714 (2005)MathSciNetCrossRefGoogle Scholar
  17. [17]
    Thieulot, C. and Espa˜nol, P. Non-isothermal diffusion in a binary mixture with smoothed particle hydrodynamics. Computer Physics Communications, 169, 172–176 (2005)CrossRefGoogle Scholar
  18. [18]
    Petsev, N. D., Leal, L. G., and Shell, M. S. Multiscale simulation of ideal mixtures using smoothed dissipative particle dynamics. The Journal of Chemical Physics, 144, 084115 (2016)CrossRefGoogle Scholar
  19. [19]
    Vázquez-Quesada, A., Ellero, M., and Espa˜nol, P. Smoothed particle hydrodynamic model for viscoelastic fluids with thermal fluctuations. Physical Review E, 79, 056707 (2009)MathSciNetCrossRefGoogle Scholar
  20. [20]
    Kulkarni, P. M., Fu, C. C., Shell, M. S., and Leal, L. G. Multiscale modeling with smoothed dissipative particle dynamics. The Journal of Chemical Physics, 138, 234105 (2013)CrossRefGoogle Scholar
  21. [21]
    Tang, Y. H., Kudo, S., Bian, X., Li, Z., and Karniadakis, G. E. Multiscale universal interface: a concurrent framework for coupling heterogeneous solvers. Journal of Computational Physics, 297, 13–31 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    Öttinger, H. C. Beyond Equilibrium Thermodynamics, Wiley & Sons, New York (2005)CrossRefGoogle Scholar
  23. [23]
    Lucy, L. B. A numerical approach to testing the fission hypothesis. Astronomical Journal, 82, 1013–1024 (1977)CrossRefGoogle Scholar
  24. [24]
    Gingold, R. A. and Monaghan, J. J. Binary fission in damped rotating polytropes. Monthly Notices of the Royal Astronomical Society, 184, 481–499 (1978)CrossRefGoogle Scholar
  25. [25]
    Liu, G. R. and Liu, M. B. Smoothed Particle Hydrodynamics, World Scientific Publishing Company, Singapore (2003)zbMATHCrossRefGoogle Scholar
  26. [26]
    Liu, M. B. and Liu, G. R. Smoothed particle hydrodynamics (SPH): an overview and recent developments. Archives of Computational Methods in Engineering, 17, 25–76 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    Wang, Z. B., Chen, R., Wang, H., Liao, Q., Zhu, X., and Li, S. Z. An overview of smoothed particle hydrodynamics for simulating multiphase flow. Applied Mathematical Modelling, 40, 9625–9655 (2016)MathSciNetCrossRefGoogle Scholar
  28. [28]
    Violeau, D. and Rogers, B. D. Smoothed particle hydrodynamics (SPH) for freesurface flows: past, present and future. Journal of Hydraulic Research, 54, 1–26 (2016)CrossRefGoogle Scholar
  29. [29]
    Groot, R. D. How to impose stick boundary conditions in coarse-grained hydrodynamics of Brownian colloids and semi-flexible fiber rheology. Journal of Chemical Physics, 136, 064901 (2012)CrossRefGoogle Scholar
  30. [30]
    Espa˜nol, P., Serrano, M., Pagonabarraga, I., and Zúniga, I. Energy-conserving coarse-graining of complex molecules. Soft Matter, 12, 4821–4837 (2016)CrossRefGoogle Scholar
  31. [31]
    Landau, L. D. and Lifshitz, E. M. Fluid Mechanics, Pergamon Press, Pergamon (1959)zbMATHGoogle Scholar
  32. [32]
    Warren, P. B. Dissipative particle dynamics. Current Opinion in Colloid & Interface Science, 3, 620–624 (1998)CrossRefGoogle Scholar
  33. [33]
    Espa˜nol, P. Statistical mechanics of coarse-graining. Lecture Notes in Physics, 640, 2256–2256 (2004)Google Scholar
  34. [34]
    Pivkin, I. V., Caswell, B., and Karniadakis, G. E. Dissipative particle dynamics. Reviews in Computational Chemistry, 27, 85–110 (2010)Google Scholar
  35. [35]
    Moeendarbary, E., Ng, T. Y., and Zangeneh, M. Dissipative particle dynamics in soft matter and polymeric applications—a review. International Journal of Applied Mechanics, 2, 161–190 (2010)CrossRefGoogle Scholar
  36. [36]
    Guigas, G., Morozova, D., and Weiss, M. Exploring membrane and protein dynamics with dissipative particle dynamics. Advances in Protein Chemistry and Structural Biology, 85, 143–182 (2011)CrossRefGoogle Scholar
  37. [37]
    Lu, Z. Y. and Wang, Y. L. An introduction to dissipative particle dynamics. Methods in Molecular Biology, 924, 617–633 (2013)CrossRefGoogle Scholar
  38. [38]
    Ghoufi, A., Emile, J., and Malfreyt, P. Recent advances in many body dissipative particles dynamics simulations of liquid-vapor interfaces. European Physical Journal E, 36, 10 (2013)CrossRefGoogle Scholar
  39. [39]
    Liu, M. B., Liu, G. R., Zhou, L. W., and Chang, J. Z. Dissipative particle dynamics (DPD): an overview and recent developments. Archives of Computational Methods in Engineering, 22, 529–556 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  40. [40]
    Groot, R. D. and Warren, P. B. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. Journal of Chemical Physics, 107, 4423–4435 (1997)CrossRefGoogle Scholar
  41. [41]
    Marsh, C. A., Backx, G., and Ernst, M. H. Static and dynamic properties of dissipative particle dynamics. Physical Review E, 56, 1676–1691 (1997)CrossRefGoogle Scholar
  42. [42]
    Moshfegh, A. and Jabbarzadeh, A. Dissipative particle dynamics: effects of parameterization and thermostating schemes on rheology. Soft Materials, 13, 106–117 (2015)CrossRefGoogle Scholar
  43. [43]
    Qiao, R. and He, P. Mapping of dissipative particle dynamics in fluctuating hydrodynamics simulations. The Journal of Chemical Physics, 128, 126101 (2008)CrossRefGoogle Scholar
  44. [44]
    Moshfegh, A. and Jabbarzadeh, A. Calibration of dissipative particle dynamics method to study rheology of dense suspensions. Applied Mechanics & Materials, 846, 163–168 (2016)CrossRefGoogle Scholar
  45. [45]
    Pivkin, I. V. and Karniadakis, G. E. Coarse-graining limits in open and wall-bounded dissipative particle dynamics systems. The Journal of Chemical Physics, 124, 184101 (2006)CrossRefGoogle Scholar
  46. [46]
    Füchslin, R. M., Fellermann, H., Eriksson, A., and Ziock, H. J. Coarse graining and scaling in dissipative particle dynamics. The Journal of Chemical Physics, 130, 214102 (2009)CrossRefGoogle Scholar
  47. [47]
    Pagonabarraga, I. and Frenkel, D. Dissipative particle dynamics for interacting systems. The Journal of Chemical Physics, 115, 5015–5026 (2001)CrossRefGoogle Scholar
  48. [48]
    Avalos, J. B. and Mackie, A. D. Dissipative particle dynamics with energy conservation. International Journal of Modern Physics C, 9, 1329–1338 (1997)Google Scholar
  49. [49]
    Espa˜nol, P. Dissipative particle dynamics with energy conservation. Europhysics Letters, 40, 631–636 (1997)CrossRefGoogle Scholar
  50. [50]
    Espa˜nol, P. Fluid particle dynamics: a synthesis of dissipative particle dynamics and smoothed particle dynamics. Europhysics Letters, 39, 605–610 (1997)CrossRefGoogle Scholar
  51. [51]
    Espa˜nol, P. Fluid particle model. Physical Review E, 57, 2930–2948 (1998)CrossRefGoogle Scholar
  52. [52]
    Flekkoy, E. G., Coveney, P. V., and de Fabritiis, G. Foundations of dissipative particle dynamics. Physical Review E, 62, 2140–2157 (2000)CrossRefGoogle Scholar
  53. [53]
    Li, Z., Bian, X., Caswell, B., and Karniadakis, G. E. Construction of dissipative particle dynamics models for complex fluids via the Mori-Zwanzig formulation. Soft Matter, 10, 8659–8672 (2014)CrossRefGoogle Scholar
  54. [54]
    Kinjo, T. and Hyodo, S. Equation of motion for coarse-grained simulation based on microscopic description. Physical Review E, 75, 051109 (2007)CrossRefGoogle Scholar
  55. [55]
    Hijón, C., Espa˜nol, P., Vanden-Eijnden, E., and Delgado-Buscalioni, R. Mori-Zwanzig formalism as a practical computational tool. Faraday Discussions, 144, 301–322 (2010)CrossRefGoogle Scholar
  56. [56]
    Espa˜nol, P. Hydrodynamics from dissipative particle dynamics. Physical Review E, 52, 1734–1742 (1995)MathSciNetCrossRefGoogle Scholar
  57. [57]
    Adams, N. A. and Hickel, S. Implicit Large-Eddy Simulation: Theory and Application, Springer Berlin Heidelberg, Berlin, 743–750 (2009)Google Scholar
  58. [58]
    Götze, I. O., Noguchi, H., and Gompper, G. Relevance of angular momentum conservation in mesoscale hydrodynamics simulations. Physical Review E, 76, 046705 (2007)CrossRefGoogle Scholar
  59. [59]
    Hu, X. Y. and Adams, N. A. Angular-momentum conservative smoothed particle dynamics for incompressible viscous flows. Physics of Fluids, 18, 101702 (2006)CrossRefGoogle Scholar
  60. [60]
    Cummins, S. J. and Rudman, M. An SPH projection method. Journal of Computational Physics, 152, 584–607 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  61. [61]
    Monaghan, J. J. Smoothed particle hydrodynamics and its diverse applications. Annual Review of Fluid Mechanics, 44, 323–346 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  62. [62]
    Bian, X. and Ellero, M. A splitting integration scheme for the SPH simulation of concentrated particle suspensions. Computer Physics Communications, 185, 53–62 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  63. [63]
    Vázquez-Quesada, A. and Ellero, M. Rheology and microstructure of non-colloidal suspensions under shear studied with smoothed particle hydrodynamics. Journal of Non-Newtonian Fluid Mechanics, 233, 37–47 (2016)MathSciNetCrossRefGoogle Scholar
  64. [64]
    Müller, K., Fedosov, D. A., and Gompper, G. Smoothed dissipative particle dynamics with angular momentum conservation. Journal of Computational Physics, 281, 301–315 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  65. [65]
    De Groot, S. R. and Mazur, P. Non-Equilibrium Thermodynamics, North Holland Publishing Company, Amsterdam (1964)zbMATHGoogle Scholar
  66. [66]
    Koumoutsakos, P. Multiscale flow simulations using particles. Annual Review of Fluid Mechanics, 37, 457–487 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  67. [67]
    Quinlan, N. J., Basa, M., and Lastiwka, M. Truncation error in mesh-free particle methods. International Journal for Numerical Methods in Engineering, 66, 2064–2085 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  68. [68]
    Ellero, M. and Adams, N. A. SPH simulations of flow around a periodic array of cylinders confined in a channel. International Journal for Numerical Methods in Engineering, 86, 1027–1040 (2011)zbMATHCrossRefGoogle Scholar
  69. [69]
    Litvinov, S., Hu, X. Y., and Adams, N. A. Towards consistence and convergence of conservative SPH approximations. Journal of Computational Physics, 301, 394–401 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  70. [70]
    Hockney, R. W. and Eastwood, J. W. Computer Simulation Using Particles, Taylor & Francis, Inc., Bristol (1988)zbMATHCrossRefGoogle Scholar
  71. [71]
    Kong, Y., Manke, C. W., Madden, W. G., and Schlijper, A. G. Effect of solvent quality on the conformation and relaxation of polymers via dissipative particle dynamics. Journal of Chemical Physics, 107, 592–602 (1997)CrossRefGoogle Scholar
  72. [72]
    Fan, X. J., Phan-Thien, N. N., Yong, N. T., Wu, X. H., and Xu, D. Microchannel flow of a macromolecular suspension. Physics of Fluids, 15, 11–21 (2003)zbMATHCrossRefGoogle Scholar
  73. [73]
    Symeonidis, V., Karniadakis, G. E., and Caswell, B. Dissipative particle dynamics simulations of polymer chains: scaling laws and shearing response compared to DNA experiments. Physical Review Letters, 95, 1–4 (2005)CrossRefGoogle Scholar
  74. [74]
    Mao, J. L., Yao, Y., Zhou, Z. W., and Hu, G. H. Polymer translocation through nanopore under external electric field: dissipative particle dynamics study. Applied Mathematics and Mechanics (English Edition), 36(12), 1581–1592 (2015) https://doi.org/10.1007/s10483-015-2062-6CrossRefGoogle Scholar
  75. [75]
    Phan-Thien, N., Mai-Duy, N., and Khoo, B. C. A spring model for suspended particles in dissipative particle dynamics. Journal of Rheology, 58, 839–867 (2014)CrossRefGoogle Scholar
  76. [76]
    Zhou, L. W., Zhang, Y. Q., Deng, X. L., and Liu, M. B. Dissipative particle dynamics simulation of flow through periodic arrays of circular micropillar. Applied Mathematics and Mechanics (English Edition), 37(11), 1431–1440 (2016) https://doi.org/10.1007/s10483-016-2091-9MathSciNetCrossRefGoogle Scholar
  77. [77]
    Khoo, B. C. Studies on liquid-liquid interfacial tension with standard dissipative particle dynamics method. Molecular Simulation, 41, 1166–1176 (2015)CrossRefGoogle Scholar
  78. [78]
    Pivkin, I. V. and Karniadakis, G. E. Accurate coarse-grained modeling of red blood cells. Physical Review Letters, 101, 1–4 (2008)CrossRefGoogle Scholar
  79. [79]
    Bow, H., Pivkin, I. V., Diez-Silva, M., Goldfless, S. J., Dao, M., Niles, J. C., Suresh, S., and Han, J. A microfabricated deformability-based flow cytometer with application to malaria. Lab on a Chip, 11, 1065–1073 (2011)CrossRefGoogle Scholar
  80. [80]
    Ye, T., Phan-Thien, N., Khoo, B. C., and Lim, C. T. Numerical modelling of a healthy/malariainfected erythrocyte in shear flow using dissipative particle dynamics method. Journal of Applied Physics, 115, 224701 (2014)CrossRefGoogle Scholar
  81. [81]
    Le-Cao, K., Phan-Thien, N., Khoo, B. C., and Mai-Duy, N. A dissipative particle dynamics model for thixotropic materials exhibiting pseudo-yield stress behaviour. Journal of Non-Newtonian Fluid Mechanics, 241, 1–13 (2017)MathSciNetCrossRefGoogle Scholar
  82. [82]
    Fedosov, D. A., Pan, W. X., Caswell, B., Gompper, G., and Karniadakis, G. E. Predicting human blood viscosity in silico. Proceedings of the National Academy of Sciences of the United States of America, 108, 7–9 (2011)CrossRefGoogle Scholar
  83. [83]
    Katanov, D., Gompper, G., and Fedosov, D. A. Microvascular blood flow resistance: role of red blood cell migration and dispersion. Microvascular Research, 99, 57–66 (2015)CrossRefGoogle Scholar
  84. [84]
    Ye, T., Phan-Thien, N., and Lim, C. T. Particle-based simulations of red blood cells—a review. Journal of Biomechanics, 49, 2255–2266 (2015)CrossRefGoogle Scholar
  85. [85]
    Ye, T., Phan-Thien, N., Lim, C. T., Peng, L., and Shi, H. X. Hybrid smoothed dissipative particle dynamics and immersed boundary method for simulation of red blood cells in flows. Physical Review E, 95, 063314 (2017)CrossRefGoogle Scholar
  86. [86]
    Hu, X. Y. and Adams, N. A. A multi-phase sph method for macroscopic and mesoscopic flows. Journal of Computational Physics, 213, 844–861 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  87. [87]
    Lei, H., Baker, N. A., Wu, L., Schenter, G. K., Mundy, C. J., and Tartakovsky, A. M. Smoothed dissipative particle dynamics model for mesoscopic multiphase flows in the presence of thermal fluctuations. Physical Review E, 94, 023304 (2016)CrossRefGoogle Scholar
  88. [88]
    Dai, S. C., Bertevas, E., Qi, F. Z., and Tanner, R. I. Viscometric functions for noncolloidal sphere suspensions with newtonian matrices. Journal of Rheology, 57, 493–510 (2013)CrossRefGoogle Scholar
  89. [89]
    Sierou, A. and Brady, J. F. Rheology and microstructure in concentrated noncolloidal suspensions. Journal of Rheology, 46, 1031–1056 (2002)CrossRefGoogle Scholar
  90. [90]
    Vázquez-Quesada, A., Tanner, R. I., and Ellero, M. Shear thinning of noncolloidal suspensions. Physical Review Letters, 117, 108001 (2016)CrossRefGoogle Scholar
  91. [91]
    Vázquez-Quesada, A., Ellero, M., and Espa˜nol, P. An SPH-based particle model for computational microrheology. Microfluid and Nanofluidics, 13, 249–260 (2012)CrossRefGoogle Scholar
  92. [92]
    Öttinger, H. C. Complex Fluids, John Wiley Sons, Inc., New York (2005)CrossRefGoogle Scholar
  93. [93]
    Donev A., Vanden-Eijnden, E., Garcia, A., and Bell, J. On the accuracy of explicit finitevolume schemes for fluctuating hydrodynamics. Communications in Applied Mathematics and Computational Science, 5, 149–197 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  94. [94]
    Radhakrishnan, R., Uma, B., Liu, J., Ayyaswamy, P. S., and Eckmann, D. M. A Temporal multiscale approach for nanocarrier motion with simultaneous adhesion and hydrodynamic interactions in targeted drug delivery. Journal of Computational Physics, 244, 252–263, (2013)MathSciNetCrossRefGoogle Scholar
  95. [95]
    Donev, A., Fai, T. G., and Vanden-Eijnden, E. A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to Fick’s law. Journal of Statistical Mechanics: Theory and Experiment, 2014, P04004 (2013)CrossRefGoogle Scholar
  96. [96]
    Plunkett, P., Hu, J., Siefert, C., and Atzberger, P. J. Spatially adaptive stochastic methods for fluid-structure interactions subject to thermal fluctuations in domains with complex geometries. Journal of Computational Physics, 277, 121–137 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  97. [97]
    Donev, A. and Vanden-Eijnden, E. Dynamic density functional theory with hydrodynamic interactions and fluctuations. The Journal of Chemical Physics, 140, 234115 (2014)CrossRefGoogle Scholar
  98. [98]
    Padding, J. and Louis, A. Hydrodynamic interactions and Brownian forces in colloidal suspensions: Coarse-graining over time and length scales. Physical Review E, 74, 031402 (2006)CrossRefGoogle Scholar
  99. [99]
    Ellero, M., Serrano, M., Espanol, P., and Espa˜nol, P. Incompressible smoothed particle hydrodynamics. Journal of Computational Physics, 226, 1731–1752 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  100. [100]
    Hu, X. Y. and Adams, N. A. An incompressible multi-phase SPH method. Journal of Computa- tional Physics, 227, 264–278 (2007)zbMATHCrossRefGoogle Scholar
  101. [101]
    Van Liedekerke, P., Smeets, B., Odenthal, T., Tijskens, E., and Ramon, H. Solving microscopic flow problems using Stokes equations in SPH. Computer Physics Communications, 184, 1686–1696 (2013)CrossRefGoogle Scholar
  102. [102]
    Sbalzarini, I. F., Walther, J. H., Bergdorf, M., Hieber, S. E., Kotsalis, E. M., and Koumoutsakos, P. PPM—a highly efficient parallel particle-mesh library for the simulation of continuum systems. Journal of Computational Physics, 215, 566–588 (2006)zbMATHCrossRefGoogle Scholar
  103. [103]
    Espa˜nol, P. and Donev, A. Coupling a nano-particle with isothermal fluctuating hydrodynamics: coarse-graining from microscopic to mesoscopic dynamics. Journal of Chemical Physics, 143, 234104 (2015)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Zienkiewicz Centre for Computational EngineeringSwansea UniversitySwanseaUK
  2. 2.Departamento de Fisica FundamentalUniversidad Nacional de Educacion a DistanciaMadridSpain

Personalised recommendations