Applied Mathematics and Mechanics

, Volume 33, Issue 8, pp 1035–1048 | Cite as

Slip and induced magnetic field effects on peristaltic transport of Johnson-Segalman fluid

Article

Abstract

The peristaltic flow of a Johnson-Segalman fluid in a planar channel is investigated in an induced magnetic field with the slip condition. The symmetric nature of the flow in a channel is utilized. The velocity slip condition in terms of shear stresses is considered. The mathematical formulation is presented, and the equations are solved under long wavelength and low Reynolds number approximations. The perturbation solutions are established for the pressure, the axial velocity, the micro-rotation component, the stream function, the magnetic-force function, the axial induced magnetic field, and the current distribution across the channel. The solution expressions for small Weissenberg numbers are derived. The flow quantities of interest are sketched and analyzed.

Key words

induced magnetic field slip condition Johnson-Segalman fluid 

Chinese Library Classification

O357.2 

2010 Mathematics Subject Classification

76A05 

References

  1. [1]
    Latham, T. W. Fluid Motion in a Peristaltic Pump, Massachusetts Institute of Technology, Massachusetts (1966)Google Scholar
  2. [2]
    Shapiro, A. H., Jaffrin, M. Y., and Weinberg, S. L. Peristaltic pumping with long wavelength at low Reynolds number. Journal of Fluid Mechanics, 37, 799–825 (1969)CrossRefGoogle Scholar
  3. [3]
    Mekheimer, K. S. and Abd-Elmaboud, Y. The influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus: application of an endoscope. Physics Letters A, 372, 1657–1665 (2008)MATHCrossRefGoogle Scholar
  4. [4]
    Mekheimer, K. S. Peristaltic flow of blood under effect of a magnetic field in a non-uniform channel. Applied Mathematics and Computation, 153, 763–777 (2004)MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Mekheimer, K. S. and Abd-Elmaboud, Y. Peristaltic flow of a couple stress fluid in an annulus: application of an endoscope. Physica A, 387, 2403–2415 (2008)CrossRefGoogle Scholar
  6. [6]
    Vajravelu, K., Radhakrishnamacharya, G., and Murty, V. R. Peristaltic flow and heat transfer in a vertical porous annulus with long wavelength approximation. International Journal of Non-Linear Mechanics, 42, 754–759 (2007)MATHCrossRefGoogle Scholar
  7. [7]
    Vajravelu, K., Sreenadh, S., and Babu, V. R. Peristaltic pumping of a Herschel-Bulkley fluid in a channel. Applied Mathematics and Computation, 169, 726–735 (2005)MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Kothandapani, M. and Srinivas, S. Peristaltic transport of a Jeffrey fluid under the effect of magnetic field in an asymmetric channel. International Journal of Non-Linear Mechanics, 43, 915–924 (2008)CrossRefGoogle Scholar
  9. [9]
    Kothandapani, M. and Srinivas, S. On the influence of wall properties in the MHD peristaltic transport with heat transfer and porous medium. Physics Letters A, 372, 4586–4591 (2008)MATHCrossRefGoogle Scholar
  10. [10]
    Kothandapani, M. and Srinivas, S. Nonlinear peristaltic transport of a Newtonian fluid in an inclined asymmetric channel through a porous medium. Physics Letters A, 372, 1265–1276 (2008)MATHCrossRefGoogle Scholar
  11. [11]
    Haroun, M. H. Effect of Deborah number and phase difference on peristaltic transport of a third grade fluid in an asymmetric channel. Communications in Nonlinear Science and Numerical Simulation, 12, 1464–1480 (2007)MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Haroun, M. H. Nonlinear peristaltic flow of a fourth grade fluid in an inclined asymmetric channel. Computational Materials Science, 39, 324–333 (2007)CrossRefGoogle Scholar
  13. [13]
    Eldabe, N. T. M., Al-Sayad, M. F., Galy, A. Y., and Sayed, H. M. Peristaltically induced motion of an MHD biviscosity fluid in a non-uniform tube. Physica A, 383, 253–266 (2007)CrossRefGoogle Scholar
  14. [14]
    Nadeem, S. and Akram, S. Peristaltic flow of a Williamson fluid in an asymmetric channel. Communications in Nonlinear Science and Numerical Simulation, 15, 1705–1716 (2010)MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    Ali, N. and Hayat, T. Peristaltic flow of a micropolar fluid in an asymmetric channel. Computers and Mathematics with Applications, 55, 589–608 (2008)MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    Hayat, T., Ali, N., Asghar, S., and Siddiqui, A. M. Exact peristaltic flow in tubes with an endoscope. Applied Mathematics and Computation, 182, 359–368 (2006)MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    Hayat, T. and Ali, N. Effect of variable viscosity on the peristaltic transport of a Newtonian fluid in an asymmetric channel. Applied Mathematical Modelling, 32, 761–774 (2008)MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    Wang, Y., Hayat, T., Ali, N., and Oberlack, M. Magnetohydrodynamic peristaltic motion of a Sisko fluid in a symmetric or asymmetric channel. Physica A, 387, 347–362 (2008)MathSciNetCrossRefGoogle Scholar
  19. [19]
    Hayat, T. and Ali, N. A mathematical description of peristaltic hydromagnetic flow in a tube. Applied Mathematics and Computation, 188, 1491–1502 (2007)MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    Hayat, T., Khan, M., Siddiqui, A. M., and Asghar, S. Non-linear peristaltic flow of a non-Newtonian fluid under effect of a magnetic field in a planar channel. Communications in Nonlinear Science and Numerical Simulation, 12, 910–919 (2007)MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    Ebaid, E. Effects of magnetic field and wall slip on the peristaltic transport of a Newtonian fluid in an asymmetric channel. Physics Letters A, 372, 4493–4499 (2008)MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    Srinivas, S., Gayathri, R., and Kothandapani, M. The influence of slip conditions, wall properties and heat transfer on the MHD peristaltic transport. Computer Physics Communications, 180, 2115–2122 (2009)MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    Mandviwalla, X. and Archer, R. The influence of slip boundary conditions on the peristaltic pumping in a rectangular channel. Journal of Fluids Engineering, 130, 124501 (2008)CrossRefGoogle Scholar
  24. [24]
    El-Shehawy, E. F., El-Dabe, N. T., and El-Desoky, I. M. Slip effects on the peristaltic flow of a non-Newtonian Maxwellian fluid. Acta Mechanica, 186, 141–159 (2006)MATHCrossRefGoogle Scholar
  25. [25]
    Sobh, A. M. Interaction of couple stresses and slip flow on peristaltic transport in uniform and non-uniform channels. Turkish Journal of Engineering and Environmental Sciences, 32, 117–123 (2008)Google Scholar
  26. [26]
    Hayat, T., Hussain, Q., and Ali, N. Influence of partial slip on the peristaltic flow in a porous medium. Physics Letters A, 387, 3399–3409 (2008)MathSciNetGoogle Scholar
  27. [27]
    Ali, N., Hussain, Q., Hayat, T., and Asghar, S. Slip effects on the peristaltic transport of MHD fluid with variable viscosity. Physics Letters A, 372, 1477–1489 (2008)MathSciNetMATHCrossRefGoogle Scholar
  28. [28]
    Hayat, T., Hina, S., and Ali, N. Simultaneous effects of slip and heat transfer on the peristaltic flow. Communications in Nonlinear Science and Numerical Simulation, 15, 1526–1537 (2010)MATHCrossRefGoogle Scholar
  29. [29]
    Hayat, T., Qureshi, M. U., and Ali, N. The influence of slip on the peristaltic motion of a third order fluid in an asymmetric channel. Physics Letters A, 372, 2653–2664 (2008)MATHCrossRefGoogle Scholar
  30. [30]
    Vishnyakov, V. I. and Pavlov, K. B. Peristaltic flow of a conductive fluid in a transverse magnetic field (in Russian). Magnitnaya Gidrodinamika, 8, 174–178 (1972)Google Scholar
  31. [31]
    Mekheimer, K. S. Effect of induced magnetic field on peristaltic flow of a couple stress fluid. Physics Letters A, 372, 4271–4278 (2008)MATHCrossRefGoogle Scholar
  32. [32]
    Nadeem, S. and Akram, S. Peristaltic flow of a couple stress fluid under the effect of induced magnetic field in an asymmetric channel. Archive of Applied Mechanics, 8, 97–109 (2011)CrossRefGoogle Scholar
  33. [33]
    Hayat, T., Khan, Y., Ali, N., and Mekheimer, K. S. Effect of an induced magnetic field on the peristaltic flow of a third order fluid. Numerical Methods for Partial Differential Equations, 26, 345–360 (2010)MathSciNetMATHGoogle Scholar
  34. [34]
    Hayat, T., Saleem, N., and Ali, N. Effect of induced magnetic field on peristaltic transport of a Carreau fluid. Communications in Nonlinear Science and Numerical Simulation, 15, 2407–2423 (2010)MathSciNetMATHCrossRefGoogle Scholar
  35. [35]
    Mekheimer, K. S. Peristaltic flow of a magneto-micropolar fluid: effect of induced magnetic field. Journal of Applied Mathematics, 2008, 570825 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Shanghai University and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of MathematicsQuaid-I-Azam UniversityIslamabadPakistan
  2. 2.Department of MathematicsComsats Institute of Information TechnologyAttockPakistan
  3. 3.Department of Mathematics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations