Multidomain pseudospectral methods for nonlinear convection-diffusion equations

  • Yuan-yuan Ji (纪园园)
  • Hua Wu (吴华)
  • He-ping Ma (马和平)Email author
  • Ben-yu Guo (郭本瑜)


Multidomain pseudospectral approximations to nonlinear convection-diffusion equations are considered. The schemes are formulated with the Legendre-Galerkin method, but the nonlinear term is collocated at the Legendre/Chebyshev-Gauss-Lobatto points inside each subinterval. Appropriate base functions are introduced so that the matrix of the system is sparse, and the method can be implemented efficiently and in parallel. The stability and the optimal rate of convergence of the methods are proved. Numerical results are given for both the single domain and the multidomain methods to make a comparison.

Key words

multidomain Legendre/Chebyshev collocation convection-diffusion equation 

Chinese Library Classification


2010 Mathematics Subject Classification

65M70 35L65 35L50 


  1. [1]
    Guo, B. Y. Spectral Methods and Their Applications, World Scientific, Singapore (1998)zbMATHCrossRefGoogle Scholar
  2. [2]
    Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A. Spectral Methods: Fundamentals in Single Domains (Scientific Computation), Springer-Verlag, Berlin (2006)zbMATHGoogle Scholar
  3. [3]
    Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A. Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation), Springer-Verlag, Berlin (2007)zbMATHGoogle Scholar
  4. [4]
    Pavoni, D. Single and multidomain Chebyshev collocation methods for the Korteweg-de Vries equation. Calcolo, 25, 311–346 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Quarteroni, A. Domain decomposition methods for systems of conservation laws: spectral collocation approximations. SIAM J. Sci. Stat. Comput., 11, 1029–1052 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Funaro, D. Domain decomposition methods for pseudospectral approximations, part I, second order equations in one dimension. Numer. Math., 52, 329–344 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Heinrichs, W. Domain decomposition for fourth-order problems. SIAM J. Numer. Anal., 30, 435–453 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    Gervasio, P. and Saleri, F. Stabilized spectral element approximation for the Navier-Stokes equations. Numer. Meth. Part. D. E., 14, 115–141 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    Szabó, B. and Babuška, I. Finite Element Analysis, John Wiley & Sons, New York (1991)zbMATHGoogle Scholar
  10. [10]
    Shen, J. Efficient spectral-Galerkin method I, direct solvers for second- and fourth-order equations using Legendre polynomials. SIAM J. Sci. Comput., 15, 1489–1505 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    Karniadakis, G. E. and Sherwin, S. J. Spectral/hp Element Methods for CFD, Numerical Mathematics and Scientific Computation, Oxford University Press, New York (1999)Google Scholar
  12. [12]
    Bernardi, C. and Maday, Y. Polynomial interpolation results in Sobolev space. J. Comput. Appl. Math., 43, 53–82 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    Ciarlet, P. G. The Finite Element Method for Elliptic Problems, North Holland, Amsterdam (1978)zbMATHGoogle Scholar
  14. [14]
    Schwab, C. p- and hp-Finite Element Methods, Numerical Mathematics and Scientific Computation, Oxford University Press, New York (1998)Google Scholar
  15. [15]
    Ma, H. P. and Guo, B. Y. Composite Legendre-Laguerre pseudospectral approximation in unbounded domains. IMA J. Numer. Anal., 21, 587–602 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    Guo, B. Y. and Ma, H. P. Composite Legendre-Laguerre approximation in unbounded domains. J. Comput. Math., 19, 101–112 (2001)MathSciNetzbMATHGoogle Scholar

Copyright information

© Shanghai University and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yuan-yuan Ji (纪园园)
    • 1
  • Hua Wu (吴华)
    • 1
  • He-ping Ma (马和平)
    • 1
    Email author
  • Ben-yu Guo (郭本瑜)
    • 2
  1. 1.Department of Mathematics, College of SciencesShanghai UniversityShanghaiP. R. China
  2. 2.Department of Mathematics, Mathematical and Science CollegeShanghai Normal UniversityShanghaiP. R. China

Personalised recommendations