Applied Mathematics and Mechanics

, Volume 29, Issue 2, pp 171–183

Discontinuous element pressure gradient stabilizations for compressible Navier-Stokes equations based on local projections

Article

Abstract

A pressure gradient discontinuous finite element formulation for the compressible Navier-Stokes equations is derived based on local projections. The resulting finite element formulation is stable and uniquely solvable without requiring a B-B stability condition. An error estimate is obtained.

Key words

discontinuous finite element methods pressure gradient projection methods compressible Navier-Stokes equations error estimation 

Chinese Library Classification

O242.21 

2000 Mathematics Subject Classification

76D05 65N30 65N15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Reed W H, Hill T R. Triangular mesh methods for the neutron transport equation[R]. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, 1973.Google Scholar
  2. [2]
    Cockburn B, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework[J]. Math Comp, 1989, 52:411–435.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Cockburn B, Lin S Y. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems[J]. J Comput Phys, 1989, 84:90–113.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Cockburn B, Shu C W. TVB Runge-Kutta discontinuous Galerkin methods for conservation laws V: multidimensional systems[J]. J Comput Phys, 1998, 144:199–224.CrossRefMathSciNetGoogle Scholar
  5. [5]
    Arnold D N, Brezzi F, Cockburn B, Marini D. Unified analysis of discontinuous Galerkin methods for elliptic problem[J]. SIAM J Numer Anal, 2002, 39:1749–1779.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Brezzi F, Manzini G, Marini D, Pietra P, Russo A. Discontinuous Galerkin approximation for elliptic problems[J]. Numerical Methods for Partial Differential Equations, 2000, 16:365–378.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Babuska I, Zlamal M. Noncomforming elements in the finite element method with penalty[J]. SIAM J Numer Anal, 1973, 10:863–875.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Cockburn B, Kanschat G, Schotzau, Schwab C. Local discontinuous Galerkin methods for the Stokes system[J]. SIAM J Numer Anal, 2002, 40:319–343.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Ye Xiu. Discontinuous stable elements for the incompressible flow[J]. Advances is Computational Mathematics, 2004, 20:333–345.MATHCrossRefGoogle Scholar
  10. [10]
    Luo Yan, Feng Minfu. Discontinuous finite element methods for the Stokes equations[J]. Mathematica Numerica Sinica, 2006, 28:163–174 (in Chinese).MathSciNetGoogle Scholar
  11. [11]
    Bassi F, Rebay S. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations[J]. J Comput Phys, 1997, 131:267–279.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Bassi F, Rebay S. Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier-Stokes equations[J]. Int J Numer Meth Fluids, 2002, 40:197–207.MATHCrossRefGoogle Scholar
  13. [13]
    Girault V, Raviart P A. Finite element methods for Navier-Stokes equations[M]. Lecture Notes in Math, Vol 749, Berlin and New York: Spring-Verlag, 1981.Google Scholar
  14. [14]
    Hughes T J, Brooks A. A multidimensional upwind scheme with no crosswind diffusion[C]. In: Hughes T J (ed). Proceedings of the ASME Symposium on Finite Element Methods for Convection Dominated Flows, New York, 1979, 19–35.Google Scholar
  15. [15]
    Johnson C. Streamline diffusion methods for problems in fluid mechanics[M]. In: Gallagher R H, Carey G F, Oden J T, Zienkiewicz O C (eds). Finite Element in Fluids, London, New York: John Wiley and Sons, 1986.Google Scholar
  16. [16]
    Brook A N, Hughes T J R. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equation[J]. Comput Meth Appl Mech Engrg, 1982, 32:199–259.CrossRefGoogle Scholar
  17. [17]
    Hansbo P. A velocity-pressure streamline diffusion finte element method for incompressible Navier-Stokes eauations[J]. Comput Meth Appl Mech Engrg, 1990, 84:175–192.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    Johnson C, Saranen J. Streamline diffusion methods for the incompressible Euler and Navier-Stokes equationa[J]. Math Comp, 1986, 47:1–18.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    Tabata M. On a conservative upwind finite element scheme for convective-diffusion equations[J]. RAIRO Anal Numer, 1981, 15:3–25.MATHMathSciNetGoogle Scholar
  20. [20]
    Franca L PandHughes T J. Two classes of mixed finite element methods[J]. Comput Meth Appl Mech Engrg, 1988, 69:89–129.MATHCrossRefGoogle Scholar
  21. [21]
    Zhou Tianxiao, Feng Minfu. A least squares Petrov-Galerkin finite element method for the stationary Navier-Stokes equationas[J]. Math Comp, 1993, 60:531–543.MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    Bochev P, Dohrmann C, Gunzburger M. Stabilization of low-order mixed finite elements for the Stokes equations[J]. SIAM J Numer Anal, 2006, 44:82–101.MATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    Blasco J, Codina R. Stabilized finite element method for the transient Navier-Stokes equations based on a pressure gradient projection[J]. Comput Meth Appl Mech Engrg, 2000, 182:277–300.MATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    Bruce Kellogg R, Liu Biyue. A finite element method for the compressible Stokes equation[J]. SIAM J Numer Anal, 1996, 33:780–788.MATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    Bruce Rand Liu B. A penalized finite element method for a compressible Stokes system[J]. SIAM J Numer Anal, 1997, 34:1093–1105.CrossRefMathSciNetGoogle Scholar
  26. [26]
    Lesaint P, Raviart P A. On a finite element method for solving the neutron transport equation[M]. In: Boor (ed). Mathematical Aspects of Finite Elements in Partial Differential Equations, New York: Academic Press, 1974, 89–145.Google Scholar
  27. [27]
    Braack M, Burman E. Local projection stabilization for the ossen problem and its interpretation as a variational multiscale method[J]. SIAM J Numer Anal, 2006, 43:2544–2566.MATHMathSciNetGoogle Scholar
  28. [28]
    Falk R S, Richter G R. Local error estimates for a finite element for hyperbolic and covectiondiffusion equations[J]. SIAM J Numer Anal, 1992, 29:730–754.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Editorial Committee of Appl. Math. Mech. and Springer-Verlag 2008

Authors and Affiliations

  • Luo Yan  (骆艳)
    • 1
  • Feng Min-fu  (冯民富)
    • 1
    • 2
  1. 1.School of Applied MathematicsUniversity of Electronic Science and Technology of ChinaChengduP. R. China
  2. 2.School of MathematicsSichuan UniversityChengduP. R. China

Personalised recommendations