Applied Mathematics and Mechanics

, Volume 29, Issue 2, pp 171–183

Discontinuous element pressure gradient stabilizations for compressible Navier-Stokes equations based on local projections



A pressure gradient discontinuous finite element formulation for the compressible Navier-Stokes equations is derived based on local projections. The resulting finite element formulation is stable and uniquely solvable without requiring a B-B stability condition. An error estimate is obtained.

Key words

discontinuous finite element methods pressure gradient projection methods compressible Navier-Stokes equations error estimation 

Chinese Library Classification


2000 Mathematics Subject Classification

76D05 65N30 65N15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Reed W H, Hill T R. Triangular mesh methods for the neutron transport equation[R]. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, 1973.Google Scholar
  2. [2]
    Cockburn B, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework[J]. Math Comp, 1989, 52:411–435.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Cockburn B, Lin S Y. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems[J]. J Comput Phys, 1989, 84:90–113.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Cockburn B, Shu C W. TVB Runge-Kutta discontinuous Galerkin methods for conservation laws V: multidimensional systems[J]. J Comput Phys, 1998, 144:199–224.CrossRefMathSciNetGoogle Scholar
  5. [5]
    Arnold D N, Brezzi F, Cockburn B, Marini D. Unified analysis of discontinuous Galerkin methods for elliptic problem[J]. SIAM J Numer Anal, 2002, 39:1749–1779.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Brezzi F, Manzini G, Marini D, Pietra P, Russo A. Discontinuous Galerkin approximation for elliptic problems[J]. Numerical Methods for Partial Differential Equations, 2000, 16:365–378.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Babuska I, Zlamal M. Noncomforming elements in the finite element method with penalty[J]. SIAM J Numer Anal, 1973, 10:863–875.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Cockburn B, Kanschat G, Schotzau, Schwab C. Local discontinuous Galerkin methods for the Stokes system[J]. SIAM J Numer Anal, 2002, 40:319–343.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Ye Xiu. Discontinuous stable elements for the incompressible flow[J]. Advances is Computational Mathematics, 2004, 20:333–345.MATHCrossRefGoogle Scholar
  10. [10]
    Luo Yan, Feng Minfu. Discontinuous finite element methods for the Stokes equations[J]. Mathematica Numerica Sinica, 2006, 28:163–174 (in Chinese).MathSciNetGoogle Scholar
  11. [11]
    Bassi F, Rebay S. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations[J]. J Comput Phys, 1997, 131:267–279.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Bassi F, Rebay S. Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier-Stokes equations[J]. Int J Numer Meth Fluids, 2002, 40:197–207.MATHCrossRefGoogle Scholar
  13. [13]
    Girault V, Raviart P A. Finite element methods for Navier-Stokes equations[M]. Lecture Notes in Math, Vol 749, Berlin and New York: Spring-Verlag, 1981.Google Scholar
  14. [14]
    Hughes T J, Brooks A. A multidimensional upwind scheme with no crosswind diffusion[C]. In: Hughes T J (ed). Proceedings of the ASME Symposium on Finite Element Methods for Convection Dominated Flows, New York, 1979, 19–35.Google Scholar
  15. [15]
    Johnson C. Streamline diffusion methods for problems in fluid mechanics[M]. In: Gallagher R H, Carey G F, Oden J T, Zienkiewicz O C (eds). Finite Element in Fluids, London, New York: John Wiley and Sons, 1986.Google Scholar
  16. [16]
    Brook A N, Hughes T J R. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equation[J]. Comput Meth Appl Mech Engrg, 1982, 32:199–259.CrossRefGoogle Scholar
  17. [17]
    Hansbo P. A velocity-pressure streamline diffusion finte element method for incompressible Navier-Stokes eauations[J]. Comput Meth Appl Mech Engrg, 1990, 84:175–192.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    Johnson C, Saranen J. Streamline diffusion methods for the incompressible Euler and Navier-Stokes equationa[J]. Math Comp, 1986, 47:1–18.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    Tabata M. On a conservative upwind finite element scheme for convective-diffusion equations[J]. RAIRO Anal Numer, 1981, 15:3–25.MATHMathSciNetGoogle Scholar
  20. [20]
    Franca L PandHughes T J. Two classes of mixed finite element methods[J]. Comput Meth Appl Mech Engrg, 1988, 69:89–129.MATHCrossRefGoogle Scholar
  21. [21]
    Zhou Tianxiao, Feng Minfu. A least squares Petrov-Galerkin finite element method for the stationary Navier-Stokes equationas[J]. Math Comp, 1993, 60:531–543.MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    Bochev P, Dohrmann C, Gunzburger M. Stabilization of low-order mixed finite elements for the Stokes equations[J]. SIAM J Numer Anal, 2006, 44:82–101.MATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    Blasco J, Codina R. Stabilized finite element method for the transient Navier-Stokes equations based on a pressure gradient projection[J]. Comput Meth Appl Mech Engrg, 2000, 182:277–300.MATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    Bruce Kellogg R, Liu Biyue. A finite element method for the compressible Stokes equation[J]. SIAM J Numer Anal, 1996, 33:780–788.MATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    Bruce Rand Liu B. A penalized finite element method for a compressible Stokes system[J]. SIAM J Numer Anal, 1997, 34:1093–1105.CrossRefMathSciNetGoogle Scholar
  26. [26]
    Lesaint P, Raviart P A. On a finite element method for solving the neutron transport equation[M]. In: Boor (ed). Mathematical Aspects of Finite Elements in Partial Differential Equations, New York: Academic Press, 1974, 89–145.Google Scholar
  27. [27]
    Braack M, Burman E. Local projection stabilization for the ossen problem and its interpretation as a variational multiscale method[J]. SIAM J Numer Anal, 2006, 43:2544–2566.MATHMathSciNetGoogle Scholar
  28. [28]
    Falk R S, Richter G R. Local error estimates for a finite element for hyperbolic and covectiondiffusion equations[J]. SIAM J Numer Anal, 1992, 29:730–754.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Editorial Committee of Appl. Math. Mech. and Springer-Verlag 2008

Authors and Affiliations

  • Luo Yan  (骆艳)
    • 1
  • Feng Min-fu  (冯民富)
    • 1
    • 2
  1. 1.School of Applied MathematicsUniversity of Electronic Science and Technology of ChinaChengduP. R. China
  2. 2.School of MathematicsSichuan UniversityChengduP. R. China

Personalised recommendations