Advertisement

Applied Mathematics and Mechanics

, Volume 28, Issue 11, pp 1455–1465 | Cite as

Travelling wave solutions for a second order wave equation of KdV type

  • Long Yao  (龙瑶)
  • Li Ji-bin  (李继彬)
  • Rui Wei-guo  (芮伟国)
  • He Bin  (何斌)
Article

Abstract

The theory of planar dynamical systems is used to study the dynamical behaviours of travelling wave solutions of a nonlinear wave equations of KdV type. In different regions of the parametric space, sufficient conditions to guarantee the existence of solitary wave solutions, periodic wave solutions, kink and anti-kink wave solutions are given. All possible exact explicit parametric representations are obtained for these waves.

Key words

solitary wave solution periodic wave solution kink wave and anti-kink wave solutions smooth and non-smooth periodic waves 

Chinese Library Classification

O175.12 

2000 Mathematics Subject Classification

37K40 37K50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Tzirtzilakis E, Xenos M, Marinakis V, Bountis T. Interactions and stability of solitary waves in shallow water[J]. Chaos, Solitons and Fractals, 2002, 14(1):87–95.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Tzirtzilakis E, Marinakis V, Apokis C, Bountis T. Soliton-like solutions of higher order wave equations of the Korteweg-de-Vries Type[J]. J Math Phys, 2002, 43(12):6151–6161.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Fokas A S. On a class of physically important integral equations[J]. Physica D, 1995, 87(1–4):145–150.CrossRefMathSciNetGoogle Scholar
  4. [4]
    Long Yao, Rui Weiguo, He Bin. Travelling wave solutions for a higher order wave equations of KdV type (I)[J]. Chaos, Solitons and Fractals, 2005, 23(2):469–475.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Li Jibin, Dai Huihui, On the studies of sigular travelling wave equations: dynamical system approach[M]. Beijing: Science Press, 2007 (in Chiese).Google Scholar
  6. [6]
    Chow S N, Hale J K. Method of bifurcation theory[M]. New York: Springer-Verlag, 1981.Google Scholar
  7. [7]
    Guckenheimer J, Holmes P J. Nonlinear oscillations, dynamical systems and bifurcations of vector fields[M]. New York: Springer-Verlag, 1983.Google Scholar
  8. [8]
    Perko L. Differential equations and dynamical systems[M]. New York: Springer-Verlag, 1991.Google Scholar
  9. [9]
    Li Y A, Olver P J. Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system I: compactons and peakons[J]. Discrete and Continuous Dynamical Systems, 1997, 3(3):419–432.zbMATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    Li Y A, Olver P J. Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system II: complex analytic behaviour and convergence to non-analytic solutions[J]. Discrete and Continuous Dynamical Systems, 1998, 4(1):159–191.zbMATHMathSciNetGoogle Scholar
  11. [11]
    Li Jibin, Liu Zhenrong. Smooth and non-smooth travelling waves in a nonlinearly dispersive equation[J]. Appl Math Modelling, 2000, 25(1):41–56.zbMATHCrossRefGoogle Scholar
  12. [12]
    Li Jibin, Liu Zhenrong, Travelling wave solutions for a class of nonlinear dispersive equations[J]. Chin Ann of Math, 2002, 23B(3):397–418.Google Scholar

Copyright information

© Editorial Committee of Appl. Math. Mech. 2007

Authors and Affiliations

  • Long Yao  (龙瑶)
    • 1
  • Li Ji-bin  (李继彬)
    • 2
    • 3
  • Rui Wei-guo  (芮伟国)
    • 1
  • He Bin  (何斌)
    • 1
  1. 1.Department of MathematicsHonghe UniversityMengziP. R. China
  2. 2.Department of MathematicsZhejiang Normal UniversityJinhuaP. R. China
  3. 3.School of ScienceKunming University of Science and TechnologyKunmingP. R. China

Personalised recommendations