Applied Mathematics and Mechanics

, Volume 28, Issue 5, pp 601–607 | Cite as

Optimal control of nonholonomic motion planning for a free-falling cat

  • Ge Xin-sheng  (戈新生)
  • Chen Li-qun  (陈立群)


The nonholonomic motion planning of a free-falling cat is investigated. Nonholonomicity arises in a free-falling cat subject to nonintegrable angle velocity constraints or nonintegrable conservation laws. When the total angular momentum is zero, the motion equation of a free-falling cat is established based on the model of two symmetric rigid bodies and conservation of angular momentum. The control of system can be converted to the problem of nonholonomic motion planning for a free-falling cat. Based on Ritz approximation theory, the Gauss-Newton method for motion planning by a falling cat is proposed. The effectiveness of the numerical algorithm is demonstrated through simulation on model of a free-falling cat.

Key words

free-falling cat nonholonomic constraint motion planning optimal control 

Chinese Library Classification


2000 Mathematics Subject Classification

49M15 70E55 70F25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Jia Shuhui. About a free-falling cat[M]. Beijing: Higher Education Press, 1990 (in Chinese).Google Scholar
  2. [2]
    McDonald D A. How dose a falling cat turn over[J]. Amer J Physiol, 1955, 129:34–35.Google Scholar
  3. [3]
    Loitsyansky A I. Theoretical mechanics[M]. Moscow: Saint Petersburg, 1953 (in Russian).Google Scholar
  4. [4]
    Kane T R, Scher M P. A dynamical explanation of the falling cat phenomenon[J]. Int J Solids Structures, 1969, 5(5):663–670.CrossRefGoogle Scholar
  5. [5]
    Liu Yanzhu. On the turning motion of a free-falling cat[J]. Acta Mechanica Sinica, 1982, 14(4):388–393 (in Chinese).Google Scholar
  6. [6]
    Brockett R W, Dai L. Nonholonomic kinematics and the role of elliptic functions in constructive controllability[C]. In: Li Z, Canny J F (eds). Nonholonomic Motion Planning, Boston: Kluwer, 1993, 1–22.Google Scholar
  7. [7]
    Murray R M, Sastry S S. Nonholonomic motion planning: steering using sinusoids[J]. IEEE Transactions on Automatic Control, 1993, 38(5):700–716.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Reyhanoglu M, Schaft A, McClamroch N, Komlanovsky I. Dynamics and control of a class of underactuated mechanical systems[J]. IEEE Transactions on Automatics Control, 1999, 44(9):1663–1671.MATHCrossRefGoogle Scholar
  9. [9]
    Leonard N E, Krishnaprasad P S. Motion control of drift-free, left-invariant systems on lie groups[J]. IEEE Transactions on Automatics Control, 1995, 40(9):1539–1554.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Fernandes C, Gurvits L, Li Z. Near-optimal nonholonomic motion planning for a system of coupled rigid bodies[J]. IEEE Transaction Automation Control, 1995, 39(3):450–464.CrossRefMathSciNetGoogle Scholar
  11. [11]
    Liu Yanzhu, Hong Jiazheng, Yang Haixin. Dynamics of multibody systems[M]. Beijing: Higher Education Press, 1990 (in Chinese).Google Scholar
  12. [12]
    Courant R, Hilbert D. Methods of mathematical physics[M]. Vol. I, New York: Wiley, 1955.Google Scholar
  13. [13]
    Joshi M C, Moudgalya K M. Optimization-theory and practice[M]. Harrow U K: Alpha Science International Ltd, 2004.Google Scholar

Copyright information

© Editorial Committee of Appl. Math. Mech. 2007

Authors and Affiliations

  • Ge Xin-sheng  (戈新生)
    • 1
  • Chen Li-qun  (陈立群)
    • 2
  1. 1.Mechanical Engineering DepartmentBeijing Institute of MachineryBeijingP. R. China
  2. 2.Shanghai Institute of Applied Mathematics and MechanicsShanghai UniversityShanghaiP. R. China

Personalised recommendations