Bacterial diversity in deep-sea sediments under influence of asphalt seep at the São Paulo Plateau

  • Luciano Lopes QueirozEmail author
  • Amanda Gonçalves Bendia
  • Rubens Tadeu Delgado Duarte
  • Diego Assis das Graças
  • Artur Luiz da Costa da Silva
  • Cristina Rossi Nakayama
  • Paulo Yukio Sumida
  • Andre O. S. Lima
  • Yuriko Nagano
  • Katsunori Fujikura
  • Hiroshi Kitazato
  • Vivian Helena Pellizari
Original Paper


Here we investigated the diversity of bacterial communities from deep-sea surface sediments under influence of asphalt seeps at the Sao Paulo Plateau using next-generation sequencing method. Sampling was performed at North São Paulo Plateau using the human occupied vehicle Shinkai 6500 and her support vessel Yokosuka. The microbial diversity was studied at two surficial sediment layers (0–1 and 1–4 cm) of five samples collected in cores in water depths ranging from 2456 to 2728 m. Bacterial communities were studied through sequencing of 16S rRNA gene on the Ion Torrent platform and clustered in operational taxonomic units. We observed high diversity of bacterial sediment communities as previously described by other studies. When we considered community composition, the most abundant classes were Alphaproteobacteria (27.7%), Acidimicrobiia (20%), Gammaproteobacteria (11.3%) and Deltaproteobacteria (6.6%). Most abundant OTUs at family level were from two uncultured bacteria from Actinomarinales (5.95%) and Kiloniellaceae (3.17%). The unexpected high abundance of Alphaproteobacteria and Acidimicrobiia in our deep-sea microbial communities may be related to the presence of asphalt seep at North São Paulo Plateau, since these bacterial classes contain bacteria that possess the capability of metabolizing hydrocarbon compounds.


Asphalt seep Deep-sea sediment Diversity Microorganisms São Paulo Plateau 



We would like to thank Japan Agency for Marine-Earth Science and Technology (JAMSTEC), the Oceanographic Institute of the São Paulo University (IOUSP), the Brazilian Geological Survey (CPRM), Petróleo Brasileiro S.A. (Petrobras) and the Embassy of Japan in Brazil for assistance in this study. We would also like to thank Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) for financial support (Project No. 2013/09159-2) and CNPq for scholarship provided to A.O.S.L (Process 311010/2015-6); the operating team of the HOV Shinkai 6500 and the crew of the R/V Yokosuka for assistance with the survey; and all team of Laboratório de Ecologia Microbiana (LECOM) for productive discussions about our methods and results, and Kleber do Espirito-Santo Filho for help with maps.

Author contributions

The author LQ, RD, CN, PS, AL, YN, KF, HK and VP designed study, LQ, RD,DG,AS and VP performed research, LQ, AB, RD and DG analysed data; LQ, AB, RD and DG contributed new methods or models; and LQ, AB, RD, CN and VP wrote the paper.

Supplementary material

10482_2020_1384_MOESM1_ESM.docx (302 kb)
Supplementary material 1 (DOCX 303 kb)


  1. Aguiar JE, de Lacerda LD, Miguens FC, Marins RV (2014) The geostatistics of the metal concentrations in sediments from the eastern Brazilian continental shelf in areas of gas and oil production. J South Am Earth Sci 51:91–104. CrossRefGoogle Scholar
  2. Almada GVMB, Bernardino AF (2017) Conservation of deep-sea ecosystems within offshore oil fields on the Brazilian margin, SW Atlantic. Biol Conserv 206:92–101. CrossRefGoogle Scholar
  3. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. CrossRefGoogle Scholar
  4. Bacosa HP, Erdner DL, Rosenheim BE et al (2018) Hydrocarbon degradation and response of seafloor sediment bacterial community in the northern Gulf of Mexico to light Louisiana sweet crude oil. ISME J 12:2532–2543. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bienhold C, Boetius A, Ramette A (2012) The energy-diversity relationship of complex bacterial communities in Arctic deep-sea sediments. ISME J 6:724–732. CrossRefPubMedGoogle Scholar
  6. Bienhold C, Zinger L, Boetius A, Ramette A (2016) Diversity and biogeography of bathyal and abyssal seafloor bacteria. PLoS ONE 11:e0148016. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Coward MP, Purdy EG, Ries A, Smith DG (1999) The distribution of petroleum reserves in basins of the South Atlantic margin. In: Cameron NR, Bate RH, Clure VS (eds) The oil and gas habitats of the South Atlantic, 153rd edn. Geological Society of London, Special Publications, London, pp 101–131Google Scholar
  9. Eloe EA, Fadrosh DW, Novotny M et al (2011) Going deeper: metagenome of a hadopelagic microbial community. PLoS ONE 6:e20388. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Fay MP, Proschan MA (2010) Wilcoxon–Mann–Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Stat Surv 4:1–39. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fujikura K, Yamanaka T, Sumida PYG et al (2017) Discovery of asphalt seeps in the deep Southwest Atlantic off Brazil. Deep Res Part II Top Stud Oceanogr 146:35–44. CrossRefGoogle Scholar
  12. Giongo A, Haag T, Simão TLL et al (2015) Discovery of a chemosynthesis-based community in the western South Atlantic Ocean. Deep Sea Res Part I Oceanogr Res Pap. CrossRefGoogle Scholar
  13. Hamdan LJ, Coffin RB, Sikaroodi M et al (2013) Ocean currents shape the microbiome of Arctic marine sediments. ISME J 7:685–696. CrossRefPubMedGoogle Scholar
  14. Herlemann DP, Labrenz M, Jürgens K et al (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 5:1571–1579. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Imhoff JF, Wiese J (2014) The order Kiloniellales. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, pp 301–306CrossRefGoogle Scholar
  16. Ishii K, Fukui M (2001) Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl Environ Microbiol 67:3753–3755. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jacob M, Soltwedel T, Boetius A, Ramette A (2013) Biogeography of deep-sea benthic bacteria at regional scale (LTER HAUSGARTEN, Fram Strait, Arctic). PLoS ONE 8:e72779. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jiang K, Zhang J, Sakatoku A et al (2018) Discovery and biogeochemistry of asphalt seeps in the North São Paulo Plateau, Brazilian Margin. Sci Rep 8:12619. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Jones DOB, Walls A, Clare M et al (2014) Asphalt mounds and associated biota on the Angolan margin. Deep Sea Res Part I Oceanogr Res Pap 94:124–136. CrossRefGoogle Scholar
  20. Jørgensen BB, Boetius A (2007) Feast and famine—microbial life in the deep-sea bed. Nat Rev Microbiol 5:770–781. CrossRefPubMedGoogle Scholar
  21. Jorgensen SL, Hannisdal B, Lanzen A et al (2012) Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. Proc Natl Acad Sci 109:E2846–E2855. CrossRefPubMedGoogle Scholar
  22. Konstantinidis KT, Braff J, Karl DM, DeLong EF (2009) Comparative metagenomic analysis of a microbial community residing at a depth of 4000 meters at station ALOHA in the North Pacific Subtropical Gyre. Appl Environ Microbiol 75:5345–5355. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kostka JE, Prakash O, Overholt WA et al (2011) Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deepwater horizon oil spill. Appl Environ Microbiol 77:7962–7974. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175Google Scholar
  25. Li H, Yu Y, Luo W et al (2009) Bacterial diversity in surface sediments from the Pacific Arctic Ocean. Extremophiles 13:233–246. CrossRefPubMedGoogle Scholar
  26. Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. Proc Natl Acad Sci USA 104:11436–11440. CrossRefPubMedGoogle Scholar
  27. MacDonald IR, Bohrmann G, Escobar E et al (2004) Asphalt volcanism and chemosynthetic life in the Campeche Knolls, Gulf of Mexico. Science 304:999–1002. CrossRefPubMedGoogle Scholar
  28. Mahmoudi N, Robeson MS, Castro HF et al (2014) Microbial community composition and diversity in Caspian Sea sediments. FEMS Microbiol Ecol 91:1–11. CrossRefPubMedPubMedCentralGoogle Scholar
  29. McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Meadows A, Meadows PS (1994) Bioturbation in deep sea Pacific sediments. J Geol Soc Lond 151:361–375. CrossRefGoogle Scholar
  31. Morris RM, Rappé MS, Connon SA et al (2002) SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420:806–810. CrossRefPubMedGoogle Scholar
  32. Murtagh F, Legendre P (2014) Ward’ s hierarchical agglomerative clustering method: which algorithms implement ward’ s criterion? J Classif 31:274–295. CrossRefGoogle Scholar
  33. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes. Appl Environ Microbiol 59:695–700CrossRefGoogle Scholar
  34. Nemergut DR, Schmidt SK, Fukami T et al (2013) Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev 77:342–356. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Oksanen J, Blanchet FG, Friendly M et al (2019) Vegan: community ecology package. R package version 2.5-5.
  36. Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ (2011) Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev MMBR 75:361–422. CrossRefPubMedGoogle Scholar
  37. Pylro VS, Roesch LFW, Morais DK et al (2014) Data analysis for 16S microbial profiling from different benchtop sequencing platforms. J Microbiol Methods 107:30–37. CrossRefPubMedGoogle Scholar
  38. Quaiser A, Zivanovic Y, Moreira D, López-García P (2011) Comparative metagenomics of bathypelagic plankton and bottom sediment from the Sea of Marmara. ISME J 5:285–304. CrossRefPubMedGoogle Scholar
  39. Quast C, Pruesse E, Yilmaz P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:590–596. CrossRefGoogle Scholar
  40. R Development Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  41. Rognes T, Flouri T, Nichols B et al (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Schauer R, Bienhold C, Ramette A, Harder J (2010) Bacterial diversity and biogeography in deep-sea surface sediments of the South Atlantic Ocean. ISME J 4:159–170. CrossRefPubMedGoogle Scholar
  43. Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. W. H. Freeman, New YorkGoogle Scholar
  44. Sunagawa S, Coelho LP, Chaffron S et al (2015) Ocean plankton. Structure and function of the global ocean microbiome. Science 348:1261359. CrossRefPubMedGoogle Scholar
  45. Walsh EA, Kirkpatrick JB, Rutherford SD et al (2016) Bacterial diversity and community composition from seasurface to subseafloor. ISME J 10:979–989. CrossRefPubMedGoogle Scholar
  46. Wickham H (2016) ggplot2. Springer, ChamCrossRefGoogle Scholar
  47. Wiese J, Thiel V, Gärtner A et al (2009) Kiloniella laminariae gen. nov., sp. nov., an alphaproteobacterium from the marine macroalga Laminaria saccharina. Int J Syst Evol Microbiol 59:350–356. CrossRefPubMedGoogle Scholar
  48. Winter WR, Jahnert RJ, França AB (2007) Bacia de Campos. In: Milani EJ, Rangel HD, Bueno GV et al (eds) Bacias Sedimentares Brasileiras – Cartas Estratigráficas, 15th edn. Boletim de Geociências da Petrobras, Rio de Janeiro, pp 511–529Google Scholar
  49. Zhang J, Sun Q, Zeng Z et al (2015) Microbial diversity in the deep-sea sediments of Iheya North and Iheya Ridge, Okinawa Trough. Microbiol Res 177:43–52. CrossRefPubMedGoogle Scholar
  50. Zhi X-Y, Li W-J, Stackebrandt E (2009) An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:589–608. CrossRefPubMedGoogle Scholar
  51. Zinger L, Amaral-Zettler LA, Fuhrman JA et al (2011) Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS ONE 6:e24570. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Luciano Lopes Queiroz
    • 1
    • 2
    Email author
  • Amanda Gonçalves Bendia
    • 1
  • Rubens Tadeu Delgado Duarte
    • 3
  • Diego Assis das Graças
    • 4
  • Artur Luiz da Costa da Silva
    • 4
  • Cristina Rossi Nakayama
    • 5
  • Paulo Yukio Sumida
    • 1
  • Andre O. S. Lima
    • 6
  • Yuriko Nagano
    • 7
  • Katsunori Fujikura
    • 7
  • Hiroshi Kitazato
    • 7
  • Vivian Helena Pellizari
    • 1
  1. 1.Institute of OceanographyUniversity of São PauloSão PauloBrazil
  2. 2.Microbiology Graduate Program, Department of Microbiology, Institute of Biomedical ScienceUniversity of São PauloSão PauloBrazil
  3. 3.Microbiology, Immunology and Parasitology DepartmentFederal University of Santa Catarina: CCB-MIPFlorianópolisBrazil
  4. 4.Institute of Biological ScienceFederal University of ParáBelémBrazil
  5. 5.Institute of Environmental, Chemical and Pharmaceutical SciencesFederal University of São PauloDiademaBrazil
  6. 6.Centro de Ciências Tecnológicas da Terra e do Mar (CTTMAR)University of Vale do ItajaíItajaíBrazil
  7. 7.Japan Agency for Marine-Earth Science and TechnologyYokosukaJapan

Personalised recommendations