Pseudomonas khazarica sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from Khazar Sea sediments

  • Vahideh Tarhriz
  • Imen Nouioui
  • Cathrin Spröer
  • Susanne Verbarg
  • Vida Ebrahimi
  • Carlos Cortés-Albayay
  • Peter Schumann
  • Mohammad Amin Hejazi
  • Hans-Peter KlenkEmail author
  • Mohammad Saeid HejaziEmail author
Original Paper


A novel Gram-negative, aerobic, motile and rod-shaped bacterium with the potential to biodegrade polycyclic aromatic hydrocarbons, was isolated from Khazar (Caspian) Sea. Strain TBZ2T grows in the absence of NaCl and tolerates up to 8.5% NaCl. Growth occurred at pH 3.0–10.0 (optimum, pH 6.0–7.0) and 10–45 °C (optimum, 30 °C). The major fatty acids are C18:1ω7C, C16:1ω7C/ C15:0 iso 2-OH, C16:0, C12:0, C10:0 3-OH, C12:0 3-OH. The major polar lipids include diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and the predominant respiratory quinone is ubiquinone Q-9. The 16S rRNA gene sequence analysis showed that strain TBZ2T is a member of the genus Pseudomonas with the highest similarity to P. oleovorans subsp. oleovorans DSM 1045T (98.83%), P. mendocina NBRC 14162T (98.63%), P. oleovorans subsp. lubricantis RS1T (98.61%) and P. alcaliphila JCM 10630T (98.49%) based on EzBioCloud server. Phylogenetic analyses using housekeeping genes (16S rRNA, rpoD, gyrB and rpoB) and genome sequences demonstrated that the strain TBZ2T formed a distinct branch closely related to the type strains of P. mendocina and P. guguanensis. Digital DNA-DNA hybridisation and average nucleotide identity values between strain TBZ2T and its closest relatives, P. mendocina NBRC 14162T (25.3%, 81.5%) and P. guguanensis JCM 18146T (26.8%, 79.0%), rate well below the designed threshold for assigning prokaryotic strains to the same species. On the basis of phenotypic, chemotaxonomic, genomic and phylogenetic results, it is recommended that strain TBZ2T is a novel species of the genus Pseudomonas, for which the name Pseudomonas khazarica sp. nov., is proposed. The type strain is TBZ2T (= LMG 29674T = KCTC 52410T).


Pseudomonas khazarica Polycyclic aromatic hydrocarbons Khazar (Caspian) sea 



This work was supported by the Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. We also acknowledge School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK. Genome sequencing was provided by MicrobesNG (, which is supported by the BBSRC (Grant Number BB/L024209/1).

Author contributions

VT isolated the bacterium; CS, SV and PS did fatty acids, 16S analysis and description; VT and VE did phenotypic, biochemical and genotypic experiments; IN performed the phylogenetic and genotypic analyses and CC-A analysed the genome and provided the genome features; MAH and VT prepared the manuscript; HPK and MSH wrote and edited the manuscript; VT, HPK and MSH designed the experiments; HPK and MSH led and supervised the project.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no direct or indirect conflict of interest.

Ethical approval

It is the original work of the authors. The work described has not been submitted elsewhere for publication, in whole or in part, and all authors listed carry out the data analysis and manuscript writing and “This article does not contain any studies with human participants or animals performed by any of the authors”. Moreover, all authors read and approved the final manuscript.

Supplementary material

10482_2019_1361_MOESM1_ESM.docx (1.3 mb)
Supplementary file1 (DOCX 1353 kb)


  1. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genom 9:75. CrossRefGoogle Scholar
  2. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Beijerinck MW (1911) Pigments as products of oxidation by bacterial action. In: KNAW proceedings, vol 13. AmsterdamGoogle Scholar
  4. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinf 30:2114–2120. CrossRefGoogle Scholar
  5. Bosma TNP, Middeldorp PJM, Schraa G, Zehnder AJB (1997) Mass transfer limitation of biotransformation: quantifying bioavailability. Environ Sci Technol 31:248–252. CrossRefGoogle Scholar
  6. Busquets A, Gomila M, Beiki F, Mulet M, Rahimian H, Garcia-Valdes E, Lalucat J (2017) Pseudomonas caspiana sp. nov., a citrus pathogen in the Pseudomonas syringae phylogenetic group. Syst Appl Microbiol 40:266–273. CrossRefPubMedGoogle Scholar
  7. Cameotra SS, Singh P (2008) Bioremediation of oil sludge using crude biosurfactants. Int Biodeterior Biodegrad 62:274–280. CrossRefGoogle Scholar
  8. Chun J, Rainey FA (2014) Integrating genomics into the taxonomy and systematics of the bacteria and archaea. Int J Syst Evol Microbiol 64:316–324. CrossRefPubMedGoogle Scholar
  9. Chun J, Rhee MS, Han JI, Bae KS (2001) Arthrobacter siderocapsulatus Dubinina and Zhdanov 1975AL is a later subjective synonym of Pseudomonas putida (Trevisan 1889) Migula 1895AL. Int J Syst Evol Microbiol 51:169–170. CrossRefPubMedGoogle Scholar
  10. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu XW, De Meyer S, Trujillo ME (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466. CrossRefPubMedGoogle Scholar
  11. Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354PubMedPubMedCentralGoogle Scholar
  12. Corbin DR, Grebenok RJ, Ohnmeiss TE, Greenplate JT, Purcell JP (2001) Expression and chloroplast targeting of cholesterol oxidase in transgenic tobacco plants. Plant Physiol 126:1116–1128. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dyksterhouse SE, Gray JP, Herwig RP, Lara JC, Staley JT (1995) Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45:116–123. CrossRefPubMedGoogle Scholar
  14. Farris JS (1972) Estimating phylogenetic trees from distance matrices. AM NAT 106:645–668CrossRefGoogle Scholar
  15. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416. CrossRefGoogle Scholar
  16. Fujikawa K, Fort FL, Samejima K, Sakamoto Y (1993) Genotoxic potency in Drosophila melanogaster of selected aromatic amines and polycyclic aromatic hydrocarbons as assayed in the DNA repair test. Mutat Res 290:175–182. CrossRefPubMedGoogle Scholar
  17. Gerhardt P, Murray R, Costilow R, Nester EW, Wood WA, Krieg NR, Phillips GB (1981) Manual of methods for general bacteriology. American Society for Microbiology, WashingtonGoogle Scholar
  18. Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7:1369. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. CrossRefPubMedGoogle Scholar
  20. Gregersen T (1978) Rapid method for distinction of gram-negative from gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127. CrossRefGoogle Scholar
  21. Guignard L, Sauvageau C (1894) Sur un nouveau Microbe chromogène le Bacillus chlororaphis Google Scholar
  22. Jin HM, Kim KH, Jeon CO (2015) Alteromonas naphthalenivorans sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from tidal-flat sediment. Int J Syst Evol Microbiol 65:4208–4214. CrossRefGoogle Scholar
  23. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. CrossRefPubMedGoogle Scholar
  24. Kumar M, León V, De Sisto MA, Ilzins OA (2008) Luis L (2008) Biosurfactant production and hydrocarbon-degradation by halotolerant and thermotolerant Pseudomonas sp. World J Microbiol Biotechnol 24(7):1047–1057. CrossRefGoogle Scholar
  25. Kumari S, Regar RK, Manickam N (2018) Improved polycyclic aromatic hydrocarbon degradation in a crude oil by individual and a consortium of bacteria. Bioresour Technol 254:174–179CrossRefGoogle Scholar
  26. Kuykendall L, Roy M, O'neill J, Devine T (1988) Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Evol Microbiol 38:358–361Google Scholar
  27. Lee M, Chandler AC (1941) A study of the nature, growth and control of bacteria in cutting compounds. J Bacteriol 41:373–386PubMedPubMedCentralGoogle Scholar
  28. Lee I, Ouk Kim Y, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103. CrossRefPubMedGoogle Scholar
  29. Lefort V, Desper R, Gascuel O (2015) FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 32:2798–2800. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Liu YC, Young LS, Lin SY, Hameed A, Hsu YH, Lai WA, Shen FT, Young CC (2013) Pseudomonas guguanensis sp. nov., a gammaproteobacterium isolated from a hot spring. Int J Syst Evol Microbiol 63:4591–4598. CrossRefPubMedGoogle Scholar
  31. MacFaddin JF (2000) Biochemical tests for identification of medical bacteria. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  32. Manickam N, Ghosh A, Jain RK, Mayilraj S (2008) Description of a novel indole-oxidizing bacterium Pseudomonas indoloxydans sp. nov., isolated from a pesticide-contaminated site. Syst Appl Microbiol 31:101–107. CrossRefPubMedGoogle Scholar
  33. Martins M, Ferreira AM, Costa MH, Costa PM (2016) Comparing the genotoxicity of a potentially carcinogenic and a noncarcinogenic PAH, singly, and in binary combination, on peripheral blood cells of the European sea bass. Environ Toxicol 31:1307–1318. CrossRefPubMedGoogle Scholar
  34. Meier-Kolthoff JP, Göker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10:2182. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M (2013a) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinf 14:60. CrossRefGoogle Scholar
  36. Meier-Kolthoff JP, Goker M, Sproer C, Klenk HP (2013b) When should a DDH experiment be mandatory in microbial taxonomy? Arch Microbiol 195:413–418. CrossRefPubMedGoogle Scholar
  37. Migula W (1900) System der Bakterien. Bd 2. Specielle Systematik der Bakterien. Fischer VerlagGoogle Scholar
  38. Miller LT (1982) Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586PubMedPubMedCentralGoogle Scholar
  39. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241. CrossRefGoogle Scholar
  40. Monias BL (1928) Classification of bacterium Alcaligenes, Pyocyaneum, and Fluorescens. Int J Infect Dis 43:330–334CrossRefGoogle Scholar
  41. O’Mahony MM, Dobson AD, Barnes JD, Singleton I (2006) The use of ozone in the remediation of polycyclic aromatic hydrocarbon contaminated soil. Chemosphere 63:307–314CrossRefGoogle Scholar
  42. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:D206–214. CrossRefPubMedGoogle Scholar
  43. Palleroni NJ (1984) Genus I. Pseudomonas Mingula 1894. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol I. Williams and Wilkins, Baltimore, p 141Google Scholar
  44. Pascual J, Lucena T, Ruvira MA, Giordano A, Gambacorta A, Garay E, Arahal DR, Pujalte MJ, Carmen Macián M (2012) Pseudomonas litoralis sp. nov., isolated from Mediterranean seawater. Int J Syst Evol Microbiol 62:438–444. CrossRefPubMedGoogle Scholar
  45. Pornsunthorntawee O, Wongpanit P, Chavadej S, Abe M, Rujiravanit R (2008) Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Bioresour Technol 99:1589–1595. CrossRefPubMedGoogle Scholar
  46. Rahman KS, Rahman TJ, Kourkoutas Y, Petsas I, Marchant R, Banat IM (2003) Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresour Technol 90:159–168CrossRefGoogle Scholar
  47. Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 106:19126–19131. CrossRefPubMedGoogle Scholar
  48. Rosselló-Móra R, Trujillo ME, Suttcliffe IC (2017) Introducing a digital protologue: a timely move towards a database-driven systematics of Archaea and Bacteria. Syst Appl Microbiol 40:121–122. CrossRefPubMedGoogle Scholar
  49. Saha R, Sproer C, Beck B, Bagley S (8062T) Pseudomonas oleovorans subsp. lubricantis subsp. nov., and reclassification of Pseudomonas pseudoalcaligenes ATCC 17440T as later synonym of Pseudomonas oleovorans ATCC 8062T. Curr Microbiol 60:294–300. CrossRefPubMedGoogle Scholar
  50. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. CrossRefGoogle Scholar
  51. Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271. CrossRefPubMedGoogle Scholar
  52. Sudan SK, Pal D, Bisht B, Kumar N, Chaudhry V, Patil P, Sahni G, Mayilraj S, Krishnamurthi S (2018) Pseudomonas fluvialis sp. nov., a novel member of the genus Pseudomonas isolated from the river Ganges India. Int J Syst Evol Microbiol 68:402–408. CrossRefPubMedGoogle Scholar
  53. Tarhriz V, Mohammadzadeh F, Hejazi MS, Nematzadeh G, Rahimi E (2011) Isolation and characterization of some aquatic bacteria from Qurugol Lake in Azerbaijan under aerobic conditions. Adv Environ Biol 3173–3179Google Scholar
  54. Tarhriz V, Hamidi A, Rahimi E, Eramabadi M, Eramabadi P, Ahaghi A, Darian EK, Hejazi M (2014) Isolation and characterization of naphthalene-degradation bacteria from Qurugol Lake located at Azerbaijan. Biosci Biotechnol Res Asia 11:715–722. CrossRefGoogle Scholar
  55. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Toth E, Szuroczki S, Keki Z, Kosztik J, Makk J, Boka K, Sproer C, Marialigeti K, Schumann P (2017) Brevundimonas balnearis sp. nov., isolated from the well water of a thermal bath. Int J Syst Evol Microbiol 67:1033–1038. CrossRefPubMedGoogle Scholar
  57. Waturangi DE, Francisca I, Susanto CO (2011) Genetic diversity of methylotrophic bacteria from human mouth based on amplified ribosomal DNA restriction analysis (ARDRA) HAYATI. J Biosci 18:77–81. CrossRefGoogle Scholar
  58. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper HG (1987) Report of the Ad Hoc Committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 37:463–464. CrossRefGoogle Scholar
  59. Wilson SC, Jones KC (1993) Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ Pollut 81:229–249. CrossRefPubMedGoogle Scholar
  60. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ, Chen HH, Xu LH, Jiang CL (2005) Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 55:1149–1153. CrossRefPubMedGoogle Scholar
  61. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017a) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Yoon SH, Ha SM, Lim J, Kwon S, Chun J (2017b) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286. CrossRefPubMedGoogle Scholar
  63. Yu XY, Zhai JY, Wu C, Zhang CY, Shi JY, Ding LX, Wu M (2018) Pseudomonas pharmafabricae sp. nov., isolated from pharmaceutical wastewater. Curr Microbiol 75:1119–1125. CrossRefPubMedGoogle Scholar
  64. Yumoto I, Yamazaki K, Hishinuma M, Nodasaka Y, Suemori A, Nakajima K, Inoue N, Kawasaki K (2001) Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. Int J Syst Evol Microbiol 51:349–355. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vahideh Tarhriz
    • 1
  • Imen Nouioui
    • 2
  • Cathrin Spröer
    • 3
  • Susanne Verbarg
    • 3
  • Vida Ebrahimi
    • 4
  • Carlos Cortés-Albayay
    • 2
  • Peter Schumann
    • 3
  • Mohammad Amin Hejazi
    • 5
  • Hans-Peter Klenk
    • 2
    Email author
  • Mohammad Saeid Hejazi
    • 1
    • 4
    • 6
    Email author
  1. 1.Molecular Medicine Research Center, Biomedicine InstituteTabriz University of Medical SciencesTabrizIran
  2. 2.School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUK
  3. 3.Leibniz Institute DSMZ-German Collection of Microorganisms and Cell CulturesBrunswickGermany
  4. 4.Faculty of PharmacyTabriz University of Medical SciencesTabrizIran
  5. 5.Branch for the Northwest and West RegionAgriculture Biotechnology Research Institute of Iran (ABRII)TabrizIran
  6. 6.School of Advanced Biomedical SciencesTabriz University of Medical SciencesTabrizIran

Personalised recommendations