Lichenibacterium ramalinae gen. nov, sp. nov., Lichenibacterium minor sp. nov., the first endophytic, beta-carotene producing bacterial representatives from lichen thalli and the proposal of the new family Lichenibacteriaceae within the order Rhizobiales

  • Timofey A. PankratovEmail author
  • Denis S. Grouzdev
  • Ekaterina O. Patutina
  • Tatiana V. Kolganova
  • Nataliya E. Suzina
  • Julia J. Berestovskaya
Original Paper


This study of lichens in the subarctic zone of the northern hemisphere has resulted in the detection of new representatives of the order Rhizobiales. The16S rRNA gene sequence phylogeny placed the strains as a separate branch inside the Rhizobiales clade. Strain RmlP001T exhibits 91.85% similarity to Roseiarcus fermentans strain Pf56T and 91.76% to Beijerinckia doebereinerae strain LMG 2819T, whilst strain RmlP026T is closely related to B. doebereinerae strain LMG 2819T (91.85%) and Microvirga pakistanensis strain NCCP-1258T (91.39%). A whole-genome phylogeny of the strains confirmed their taxonomic positions. The cells of both strains were observed to be Gram-negative, motile rods that multiplied by binary fission. The cells were found to contain poly-β-hydroxybutyrate and polyphosphate, to grow at pH 3.5–8.0 and 10–30 °C, and could not fix atmospheric nitrogen. Their major cellular fatty acid identified was C18:1ω7c (68–71%) and their DNA G + C contents determined to be 70.5–70.8%. Beta-carotene was identified as their major carotenoid pigment; Q-10 was the only ubiquinone detected. Strains RmlP001T and RmlP026T are distinguishable from related species by the presence of β-carotene, the absence of C1 metabolism and the ability to grow in the presence of 3.5% NaCl. Based on their phylogenetic, phenotypic and chemotaxonomic features, we propose a novel genus Lichenibacterium and two novel species, Lichenibacterium ramalinae (the type species of the genus) and Lichenibacterium minor, to accommodate these bacteria within the family Lichenibacteriaceae fam. nov. of the order Rhizobiales. The L. ramalinae type strain is RmlP001T (= KCTC 72076T = VKM B-3263T) and the L. minor type strain is RmlP026T (= KCTC 72077T = VKM B-3277T).


Lichenibacterium LAR1 Lichen endophytes Rhizobiales Beta-carotene Phylogenetic analysis Symbiotic bacteria 



This work was supported with the Russian Fund of Basic Research (projects 16-04-00966a and 19-04-00297a) and the Ministry of Science and Higher Education of the Russian Federation (cultivation studies by J.J. Berestovskaya).

Authors’ contributions

TP designed the study. TP examined lichen samples, obtained isolates, performed growth experiments; took phase contrast and micro pictures. DG, EP, TK obtained, annotated and analyzed the genome sequences. JB performed growth and physiological experiments. NS prepared ultrathin sections of cells and took pictures. TP and DG wrote the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10482_2019_1357_MOESM1_ESM.doc (7.4 mb)
Supplementary material 1 (DOC 7542 kb)


  1. Ashikhmin A, Makhneva Z, Bolshakov M, Moskalenko M (2014) Distribution of colored carotenoids between light-harvesting complexes in the process of recovering carotenoid biosynthesis in Ectothiorhodospira haloalkaliphila cells. J Photochem Photobiol B Biol 141:59–66. CrossRefGoogle Scholar
  2. Auch AF, Von Jan M, Klenk HP, Göker M (2010) Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genom Sci 2(1):117. CrossRefGoogle Scholar
  3. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bates ST, Cropsey GWG, Caporaso JG, Knight R, Fierer N (2011) Bacterial communities associated with the lichen symbiosis. Appl Environ Microbiol 77(4):1309–1314. CrossRefPubMedGoogle Scholar
  5. Belova SE, Ravin NV, Pankratov TA, Rakitin AL, Ivanova AA, Beletsky AV, Mardanov AV, Damste JSS, Dedysh SN (2018) Hydrolytic capabilities as a key to environmental success: chitinolytic and cellulolytic Acidobacteria from acidic sub-arctic soils and boreal peatlands. Front Microbiol. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Benning C, Huang ZH, Gage DA (1995) Accumulation of a novel glycolipid and a betaine lipid in cells of Rhodobacter sphaeroides grown under phosphate limitation. Arch Biochem Biophys 317:103–111. CrossRefPubMedGoogle Scholar
  7. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cardinale M, de Castro JV, Mueller H, Berg G, Grube M (2008) In situ analysis of the bacterial community associated with the reindeer lichen Cladonia arbuscula reveals predominance of Alphaproteobacteria. FEMS Microbiol Ecol 66(1):63–71. CrossRefPubMedGoogle Scholar
  9. Cardinale M, Grube M, Berg G (2011) Frondihabitans cladoniiphilus sp. nov., an actinobacterium of the family Microbacteriaceae isolated from lichen, and emended description of the genus Frondihabitans. Int J Syst Evol Microbiol 61:3033–3038. CrossRefPubMedGoogle Scholar
  10. Cardinale M, Grube M, de Castro JV, Mueller H (2012) Bacterial taxa associated with the lung lichen Lobaria pulmonaria are differentially shaped by geography and habitat. FEMS Microbiol Lett 329(2):111–115. CrossRefPubMedGoogle Scholar
  11. Chaudhari NM, Gupta VK, Dutta C (2016) BPGA-an ultra-fast pan-genome analysis pipeline. Sci Rep. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dedysh SN, Dunfield PF (2015) Beijerinckiaceae. In: Bergey’s manual of systematics of archaea and bacteria. Bergey’s Manual Trust.
  13. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. NucleicAcidRes 32(5):1792–1797. CrossRefGoogle Scholar
  14. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Erlacher A, Cernava T, Cardinale M, Soh J, Sensen CW, Grube M, Berg G (2015) Rhizobiales as functional and endosymbiontic members in the lichen symbiosis of Lobaria pulmonaria L. Front Microbiol. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gerhardt P (1981) Manual of Methods for General Bacteriology. American Society for Microbiology, Washington, DCGoogle Scholar
  17. Green PN (2015) Methylobacterium. In: Bergey’s manual of systematics of archaea and bacteria. Bergey’s Manual Trust,
  18. Grube M, Berg G (2009) Microbial consortia of bacteria and fungi with focus on the lichen symbiosis. Fungal Biol Rev 23:72–85. CrossRefGoogle Scholar
  19. Grube M, Cardinale M, de Castro JV, Müller H, Berg G (2009) Species-specific structural and functional diversity of bacterial communities in lichen symbiosis. ISME J 3:1105–1115. CrossRefPubMedGoogle Scholar
  20. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2017) UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evolut 35(2):518–522. CrossRefGoogle Scholar
  21. Hodkinson BP, Lutzoni F (2009) A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales. Symbiosis 49:163–180. CrossRefGoogle Scholar
  22. Hodkinson BP, Gottel NR, Schadt ChW, Lutzoni F (2012) Photoautotrophic symbiont and geography are major factors affecting highly structured and diverse bacterial communities in the lichen microbiome. Environ Microbiol 14(1):147–161. CrossRefPubMedGoogle Scholar
  23. Jiang D-F, Wang H-Y, Si H-L, Zhao L, Liu CP, Zhang H (2017) Isolation and culture of lichen bacteriobionts. Lichenologist 49(2):175–181. CrossRefGoogle Scholar
  24. Kalyaanamoorthy S, Minh BQ, Wong TK, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14(6):587. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kates M (1972) Techniques of lipidology: isolation, analysis and identification of lipids. In: Work TS, Work E (eds) Lab Tech Biochem Mol Biol, North-Holland Publishing Company, Amsterdam, 3, pp 267–610Google Scholar
  26. Kato Y, Asahara M, Goto K, Kasai H, Yokota A (2008) Methylobacterium persicinum sp. nov., Methylobacterium komagatae sp. nov., Methylobacterium brachiatum sp. nov., Methylobacterium tardum sp. nov. and Methylobacterium gregans sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 58:1134–1141. CrossRefPubMedGoogle Scholar
  27. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evolut 30(4):772–780. CrossRefGoogle Scholar
  28. Kulichevskaya IS, Danilova OV, Tereshina VM, Kevbrin VV, Dedysh SN (2014) Descriptions of Roseiarcus fermentans gen. nov., sp. nov., a bacteriochlorophyll a-containing fermentative bacterium related phylogenetically to alphaproteobacterial methanotrophs, and of the family Roseiarcaceae fam. nov. Int J Syst Evol Microbiol 64:2558–2565. CrossRefPubMedGoogle Scholar
  29. Kulichevskaya IS, Ivanova AA, Detkova EN, Rijpstra WIC, Damsté JSS, Dedysh SN (2017) Tundrisphaera lichenicola gen. nov., sp. nov., a psychrotolerant representative of the family Isosphaeraceae from lichen-dominated tundra soils. Int J Syst Evol Microbiol 67:3583–3589. CrossRefPubMedGoogle Scholar
  30. Lane DJ (1991) 16S/23S rRNA Sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematic. Wiley, New York, pp 115–175Google Scholar
  31. Lee D-H, Hur JS, Kahng H-Y (2013) Sphingobacterium cladoniae sp. nov., isolated from lichen, Cladonia sp., and emended description of Sphingobacterium siyangense. Int J Syst Evol Microbiol 63:755–760. CrossRefPubMedGoogle Scholar
  32. Männistö MK, Tiirola M, McConnell J, Häggblom MM (2010) Mucilaginibacter frigoritolerans sp. nov., Mucilaginibacter lappiensis sp. nov. and Mucilaginibacter mallensis sp. nov., isolated from soil and lichen samples. Int J Syst Evol Microbiol 60:2849–2856. CrossRefGoogle Scholar
  33. Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tingek S, Moran NA (2011) A simple and distinctive microbiota associated with honey bees and bumble bees. Mol Ecol 20(3):619–628. CrossRefPubMedGoogle Scholar
  34. Moya P, Molins A, Martínez-Alberola F, Muggia L, Barreno E (2017) Unexpected associated microalgal diversity in the lichen Ramalina farinacea is uncovered by pyrosequencing analyses. PLoS ONE 12(4):1–21. CrossRefGoogle Scholar
  35. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2014) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32(1):268–274. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Nichols BW (1963) Separation of the lipids of photosynthetic tissues: improvements in analysis by thin-layer chromatography. Biochim Biophys Acta 70:417–422. CrossRefPubMedGoogle Scholar
  37. Oggerin M, Arahal DR, Rubio RV, Marín I (2009) Identification of Beijerinckia fluminensisstrains CIP 106281T and UQM 1685T as Rhizobium radiobacter strains, and proposal of Beijerinckia doebereinerae sp. nov. to accommodate Beijerinckia fluminensis LMG 2819. Int J Syst Evol Microbiol 59:2323–2328. CrossRefPubMedGoogle Scholar
  38. Oh J, Freeman AF, Comparative Sequencing Program NISC, Park M, Sokolic R, Candotti F, Holland SM, Segre JA, Kong HH (2013) The altered landscape of the human skin microbiome in patients with primary immunodeficiencies. Genom Res 23(12):2103–2114. CrossRefGoogle Scholar
  39. Pankratov TA (2018) Bacterial complexes of Khibiny Mountains lichens revealed in Cladonia uncialis, C. portentosa, Alectoria ochroleuca, and Nephroma arcticum. Microbiology 87:79–88. CrossRefGoogle Scholar
  40. Phongsopitanun W, Matsumoto A, Inahashi Y, Kudo T, Mori M, Shiomi K, Takahashi Y, Tanasupawat S (2016) Actinoplanes lichenis sp. nov., isolated from lichen. Int J Syst Evol Microbiol 66:468–473. CrossRefPubMedGoogle Scholar
  41. Printzen C, Fernandez-Mendoza F, Muggia L, Berg G, Grube M (2012) Alphaproteobacterial communities in geographically distant populations of the lichen Cetraria aculeate. FEMS Microbiol Ecol 82(2):316–325. CrossRefPubMedGoogle Scholar
  42. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212 PMID: 13986422 CrossRefGoogle Scholar
  43. Rodriguez-R LM, Konstantinidis KT (2016) The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. Peer J. Preprints.
  44. Sato S, Siarot L, Matsuoka J, Aono T, Oyaizu H (2016) An Azorhizobium caulinodans ORS571 mutant with deletion of a gene encoding a TIGR02302 family protein overproduces exopolysaccharides and is defective in infection into plant host cells. Soil Sci Plant Nutr 62(4):392–398. CrossRefGoogle Scholar
  45. Schneider Th, Schmid E, de Castro JV, Jr Cardinale M, Eberl L, Grube M, Berg G, Riedel K (2011) Structure and function of the symbiosis partners of the lung lichen (Lobaria pulmonaria L. Hoffm.) analyzed by metaproteomics. Proteomics 11:2752–2756. CrossRefPubMedGoogle Scholar
  46. Tatusova T, Dicuccio M, Badretdin A, ChetverninV Nawrocki P, Zaslavsky L et al (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acid Res 44:6614–6624. CrossRefPubMedGoogle Scholar
  47. Täubel M, Rintala H, Pitkäranta M, Paulin L, Laitinen S, Pekkanen J, Hyvärinen A, Nevalainen A (2009) The occupant as a source of house dust bacteria. J Allergy Clin Immunol 124:834–840. CrossRefPubMedGoogle Scholar
  48. Yamamura H, Ashizawa H, Nakagawa Y, Hamada M, Ishida Y, Otoguro M, Tamura T, Hayakawa M (2011) Actinomycetospora rishiriensis sp. nov., isolated from a lichen. Int J Syst Evol Microbiol 61:2621–2625. CrossRefPubMedGoogle Scholar
  49. Li E, Hamm CM, Gulati AS, Sartor RB, Chen H, Wu X, Zhang T, et al. (2012) Inflammatory bowel diseases phenotype, C. difficile and NOD2 genotype are associated with shifts in human ileum. Associated Microbial Composition. PLoS ONE. CrossRefGoogle Scholar
  50. Zhang X-X, Tang X, Sheirdil RA, Sun L, Ma X-T (2014) Rhizobium rhizoryzae sp. nov., isolated from rice roots. Int J Syst Evol Microbiol 64:1373–1377. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.M.V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of BioengineeringResearch Center of Biotechnology of the Russian Academy of SciencesMoscowRussia
  3. 3.G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the RASFederal Research Centre “Pushchino Scientific Centre of Biological Investigations RAS”PushchinoRussia
  4. 4.S.N, Winogradsky Institute of MicrobiologyResearch Center of Biotechnology of the Russian Academy of SciencesMoscowRussia

Personalised recommendations