Advertisement

Litorilituus lipolyticus sp. nov., isolated from intertidal sand of the Yellow Sea in China, and emended description of Colwellia asteriadis

  • Ang LiuEmail author
  • Yan-Jiao Zhang
  • Qing-Jie Xue
  • Hui Wang
  • Yuan-Yuan Yang
  • Feng Du
  • Long-Yu Zhao
  • Hong-Hua Zhang
  • Yun-Qing Li
  • Xiu-Zhen Li
Original Paper
  • 21 Downloads

Abstract

A Gram-stain negative, rod-shaped, aerobic, oxidase-positive and catalase-weakly positive bacterial strain with polar or subpolar flagellum, designated RZ04T, was isolated from an intertidal sand sample collected from a coastal area of the Yellow Sea, China. The organism was observed to grow optimally at 25 °C and pH 6.5–7.0 with 2% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain RZ04T was closely related to Colwellia asteriadis (similarity 96.9%) and Litorilituus sediminis (similarity 96.8%), and 94.4–96.4% sequence similarities to other type strains of species of the genera belonged to the family Colwelliaceae. The dominant fatty acids of strain RZ04T were determined to be C17:1ω8c, C15:1ω8c, C16:0 and summed feature 3 (C16:1ω6c and/or C16:1ω7c), and the predominant isoprenoid quinone was determined to be quinone 8 (Q-8). Phosphatidylethanolamine, phosphatidylglycerol, an unidentified aminophospholipid and four unidentified lipids were determined to be the major constituents of the polar lipids. The genome of strain RZ04T is 4.14 Mbp with a G + C content of 37.4 mol%. A total of 3631 genes are predicted, with 3531 protein-coding genes, 75 RNA genes and 25 pseudogenes. Based on phenotypic, genotypic and phylogenetic analysis, strain RZ04T is considered to represent a novel species in the genus Litorilituus, for which the name Litorilituus lipolyticus is proposed. The type strain is RZ04T (= MCCC 1K03616T = KCTC 62835T). An emended description of Colwellia asteriadis is also provided.

Keywords

Colwellia asteriadis Colwelliaceae Genome sequencing Litorilituus lipolyticus sp. nov. Litorilituus Polyphasic taxonomy 

Notes

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grants 81801982, 31500056, 31300005), the Supporting Fund for Teachers’ Research of Jining Medical University (Grants JYFC2018KJ069, JYFC2018KJ007) and the Shandong Key Research and Development Plan project (Grant 2018GCF118137)

Authors contribution

Authors A. Liu and Y. J. Zhang performed the taxonomic analysis and wrote the manuscript. Authors F. Du, H. Wang, Y. Y. Yang, L. Y. Zhao, and H. H. Zhang performed the physiological analysis. Authors Y. Q. Li, Q. J. Xue and X. Z. Li carried out lipid analyses. All authors contributed to manuscript revision and approved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary material

10482_2019_1355_MOESM1_ESM.docx (3.9 mb)
Supplementary material 1 (DOCX 3942 kb)

References

  1. Blenden DC, Goldberg HS (1965) Silver impregnation stain for leptospira and flagella. J Bacteriol 89:899–900PubMedPubMedCentralGoogle Scholar
  2. Blom J, Kreis J, Spanig S, Juhre T, Bertelli C, Ernst C, Goesmann A (2016) EDGAR 2.0: an enhanced software platform for comparative gene content analyses. Nucleic Acids Res 44:W22–W28CrossRefGoogle Scholar
  3. Brettin T, Davis JJ, Disz T et al (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365CrossRefGoogle Scholar
  4. Buck JD (1982) Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993PubMedPubMedCentralGoogle Scholar
  5. Choi EJ, Kwon HC, Koh HY, Kim YS, Yang HO (2010) Colwellia asteriadis sp. nov., a marine bacterium isolated from the starfish Asterias amurensis. Int J Syst Evol Microbiol 60:1952–1957CrossRefGoogle Scholar
  6. Christiansen L, Bech PK, Schultz-Johansen M, Martens HJ, Stougaard P (2018) Colwellia echini sp. nov., an agar- and carrageenan-solubilizing bacterium isolated from sea urchin. Int J Syst Evol Microbiol 68:687–691CrossRefGoogle Scholar
  7. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefGoogle Scholar
  8. Huerta-Cepas J, Szklarczyk D, Forslund K et al (2016) eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 44:D286–D293CrossRefGoogle Scholar
  9. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  10. Komagata K, Suzuki KI (1987) 4 Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207CrossRefGoogle Scholar
  11. Konstantinidis KT, Tiedje JM (2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258–6264CrossRefGoogle Scholar
  12. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549CrossRefGoogle Scholar
  13. Kusube M, Kyaw TS, Tanikawa K, Chastain RA, Hardy KM, Cameron J, Bartlett DH (2017) Colwellia marinimaniae sp. nov., a hyperpiezophilic species isolated from an amphipod within the challenger deep, Mariana Trench. Int J Syst Evol Microbiol 67:824–831CrossRefGoogle Scholar
  14. Li R, Zhu H, Ruan J et al (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272CrossRefGoogle Scholar
  15. Liu A, Zhang XY, Chen CX et al (2013) Neptunomonas qingdaonensis sp. nov., isolated from intertidal sand. Int J Syst Evol Microbiol 63:1673–1677CrossRefGoogle Scholar
  16. Liu A, Liu HM, Du F, Wang S, Zhao LY, Zhang HH, Li YQ, Xue QJ, Li XZ (2019) Flavivirga rizhaonensis sp. nov., a marine bacterium isolated from intertidal sand. Antonie Van Leeuwenhoek 101:21Google Scholar
  17. Luo C, Rodriguez RL, Konstantinidis KT (2014) MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 42:e73CrossRefGoogle Scholar
  18. Na SI, Kim YO, Yoon SH, Ha SM, Baek I, Chun J (2018) UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:280–285CrossRefGoogle Scholar
  19. Nogi Y, Hosoya S, Kato C, Horikoshi K (2004) Colwellia piezophila sp. nov., a novel piezophilic species from deep-sea sediments of the Japan Trench. Int J Syst Evol Microbiol 54:1627–1631CrossRefGoogle Scholar
  20. Richter M, Rossello-Mora R, Oliver Glockner F, Peplies J (2016) JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32:929–931CrossRefGoogle Scholar
  21. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  22. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krige NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654Google Scholar
  23. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624CrossRefGoogle Scholar
  24. Wang Y, Zhao R, Ji S, Li Z, Yu T, Li B, Shi X, Zhang XH (2013) Litorilituus sediminis gen. nov. sp. nov., isolated from coastal sediment of an amphioxus breeding zone in Qingdao, China. Antonie Van Leeuwenhoek 104:423–430CrossRefGoogle Scholar
  25. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703CrossRefGoogle Scholar
  26. Wilhelms M, Molero R, Shaw JG, Tomas JM, Merino S (2011) Transcriptional hierarchy of Aeromonas hydrophila polar-flagellum genes. J Bacteriol 193:5179–5190CrossRefGoogle Scholar
  27. Wirth JS, Whitman WB (2018) Phylogenomic analyses of a clade within the roseobacter group suggest taxonomic reassignments of species of the genera Aestuariivita, Citreicella, Loktanella, Nautella, Pelagibaca, Ruegeria, Thalassobius, Thiobacimonas and Tropicibacter, and the proposal of six novel genera. Int J Syst Evol Microbiol 68:2393–2411CrossRefGoogle Scholar
  28. Wu YH, Xu L, Zhou P, Wang CS, Oren A, Xu XW (2015) Brevirhabdus pacifica gen. nov., sp. nov., isolated from deep-sea sediment in a hydrothermal vent field. Int J Syst Evol Microbiol 65:3645–3651CrossRefGoogle Scholar
  29. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617CrossRefGoogle Scholar
  30. Zhang XY, Liu A, Liu C, Li H, Li GW, Xu Z, Chen XL, Zhou BC, Zhang YZ (2013) Arenitalea lutea gen. nov., sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from intertidal sand. Int J Syst Evol Microbiol 63:2853–2858CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Pathogenic BiologyJining Medical UniversityJiningPeople’s Republic of China
  2. 2.Shandong Province Key Laboratory of Applied Mycology, School of Life SciencesQingdao Agricultural UniversityQingdaoPeople’s Republic of China

Personalised recommendations