Advertisement

Promotion of Bacillus subtilis subsp. inaquosorum, Bacillus subtilis subsp. spizizenii and Bacillus subtilis subsp. stercoris to species status

  • Christopher A. DunlapEmail author
  • Michael J. Bowman
  • Daniel R. Zeigler
Original Paper

Abstract

Bacillus subtilis currently encompasses four subspecies, Bacillus subtilis subsp. subtilis, Bacillus subtilis subsp. inaquosorum, Bacillus subtilis subsp. spizizenii and Bacillus subtilis subsp. stercoris. Several studies based on genomic comparisons have suggested these subspecies should be promoted to species status. Previously, one of the main reasons for leaving them as subspecies was the lack of distinguishing phenotypes. In this study, we used comparative genomics to determine the genes unique to each subspecies and used these to lead us to the unique phenotypes. The results show that one difference among the subspecies is they produce different bioactive secondary metabolites. B. subtilis subsp. spizizenii is shown conserve the genes to produce mycosubtilin, bacillaene and 3,3′-neotrehalosadiamine. B. subtilis subsp. inaquosorum is shown conserve the genes to produce bacillomycin F, fengycin and an unknown PKS/NRPS cluster. B. subtilis subsp. stercoris is shown conserve the genes to produce fengycin and an unknown PKS/NRPS cluster. While B. subtilis subsp. subtilis is shown to conserve the genes to produce 3,3′-neotrehalosadiamine. In addition, we update the chemotaxonomy and phenotyping to support their promotion to species status.

Keywords

Core genome Secondary metabolites Antifungal Antibiotic Lipopeptide Surfactin Bacilysin Subtilosin 

Notes

Acknowledgements

The authors would like to thank Heather Walker for her technical expertise in genome sequencing and phenotype analysis. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture. The mention of firm names or trade products does not imply that they are endorsed or recommended by the USDA over other firms or similar products not mentioned. USDA is an equal opportunity provider and employer. This material is also based in part upon work supported by the National Science Foundation under Grant No. 1756219.

Author contributions

The study conception, design, comparative genomics and interpretation was performed by Christopher Dunlap. Mass spectroscopy and analysis was performed by Michael Bowman. Correlation of the genes to the Bacillus subtilis orthologs and associated interpretation the results was performed by Daniel Zeigler. The first draft of the manuscript was written by Christopher Dunlap and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by the author.

Supplementary material

10482_2019_1354_MOESM1_ESM.pdf (3 mb)
Supplementary material 1 (PDF 3112 kb)

References

  1. Adelskov J, Patel BKC (2016) A molecular phylogenetic framework for Bacillus subtilis using genome sequences and its application to Bacillus subtilis subspecies stecoris strain D7XPN1, an isolate from a commercial food-waste degrading bioreactor. 3 Biotech 6:96.  https://doi.org/10.1007/s13205-016-0408-8 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adelskov J, Patel BKC (2017) Erratum to: A molecular phylogenetic framework for Bacillus subtilis using genome sequences and its application to Bacillus subtilis subspecies stecoris strain D7XPN1, an isolate from a commercial food-waste degrading bioreactor. 3 Biotech 7:142.  https://doi.org/10.1007/s13205-017-0747-0 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ahn S, Jun S, Ro HJ, Kim JH, Kim S (2018) Complete genome of Bacillus subtilis subsp. subtilis KCTC 3135(T) and variation in cell wall genes of B. subtilis strains. J Microbiol Biotechnol 28:1760–1768.  https://doi.org/10.4014/jmb,1712.12006 CrossRefPubMedGoogle Scholar
  4. Babasaki K, Takao T, Shimonishi Y, Kurahashi K (1985) Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: isolation, structural analysis, and biogenesis. J Biochem 98:585–603.  https://doi.org/10.1093/oxfordjournals.jbchem.a135315 CrossRefPubMedGoogle Scholar
  5. Borriss R, Danchin A, Harwood CR, Medigue C, Rocha EPC, Sekowska A, Vallenet D (2018) Bacillus subtilis, the model Gram-positive bacterium: 20 years of annotation refinement. Microb Biotechnol 11:3–17.  https://doi.org/10.1111/1751-7915.13043 CrossRefPubMedGoogle Scholar
  6. Breznak JA, Costilow RN (1994) Physicochemical factors in growth. In: Methods for general and molecular bacteriology, pp 137–154Google Scholar
  7. Brito PH, Chevreux B, Serra CR, Schyns G, Henriques AO, Pereira-Leal JB (2018) Genetic competence drives genome diversity in Bacillus subtilis. Genome Biol Evolut 10:108–124.  https://doi.org/10.1093/gbe/evx270 CrossRefGoogle Scholar
  8. Butcher RA, Schroeder FC, Fischbach MA, Straight PD, Kolter R, Walsh CT, Clardy J (2007) The identification of bacillaene, the product of the PksX megacomplex in Bacillus subtilis. Proc Natl Acad Sci USA 104:1506–1509.  https://doi.org/10.1073/pnas.0610503104 CrossRefPubMedGoogle Scholar
  9. Chan CM, Danchin A, Marliere P, Sekowska A (2014) Paralogous metabolism: S-alkyl-cysteine degradation in Bacillus subtilis. Environ Microbiol 16:101–117.  https://doi.org/10.1111/1462-2920.12210 CrossRefPubMedGoogle Scholar
  10. Cosmina P, Rodriguez F, de Ferra F, Grandi G, Perego M, Venema G, van Sinderen D (1993) Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol Microbiol 8:821–831.  https://doi.org/10.1111/j.1365-2958.1993.tb01629.x CrossRefPubMedGoogle Scholar
  11. Duitman EH, Hamoen LW, Rembold M, Venema G, Seitz H, Saenger W, Bernhard F, Reinhardt R, Schmidt M, Ullrich C, Stein T, Leenders F, Vater J (1999) The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc Natl Acad Sci USA 96:13294–13299.  https://doi.org/10.1073/pnas.96.23.13294 CrossRefPubMedGoogle Scholar
  12. Dunlap CA, Kwon S-W, Rooney AP, Kim S-J (2015) Bacillus paralicheniformis sp. nov., isolated from fermented soybean paste. Int J Syst Evol Microbiol 65:3487–3492.  https://doi.org/10.1099/ijsem.0.000441 CrossRefPubMedGoogle Scholar
  13. Dunlap CA, Bowman MJ, Schisler DA, Rooney AP (2016) Genome analysis shows Bacillus axarquiensis is not a later heterotypic synonym of Bacillus mojavensis; Reclassification of Bacillus malacitensis and Brevibacterium halotolerans as heterotypic synonyms of Bacillus axarquiensis. Int J Syst Evol Microbiol 66:2438–2443.  https://doi.org/10.1099/ijsem.0.001048 CrossRefPubMedGoogle Scholar
  14. Dunlap CA, Schisler DA, Perry EB, Connor N, Cohan F, Rooney AP (2017) Bacillus swezeyi sp. nov. and Bacillus haynesii sp. nov., isolated from desert soil. Int J Syst Evol Microbiol 67:2720–2725.  https://doi.org/10.1099/ijsem.0.002007 CrossRefPubMedGoogle Scholar
  15. Dunlap CA, Bowman MJ, Rooney AP (2019) Iturinic lipopeptide diversity in the Bacillus subtilis species group—important antifungals for plant disease biocontrol applications. Front Microbiol 10:1794.  https://doi.org/10.3389/fmicb.2019.01794 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Inaoka T, Ochi K (2011) Activation of dormant secondary metabolism neotrehalosadiamine synthesis by an RNA polymerase mutation in Bacillus subtilis. Biosci Biotechnol Biochem 75:618–623CrossRefGoogle Scholar
  17. Jolley KA, Maiden MC (2010) BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11:595.  https://doi.org/10.1186/1471-2105-11-595 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Knight C, Bowman MJ, Frederick L, Day A, Lee C, Dunlap CA (2018) The first report of antifungal lipopeptide production by a Bacillus subtilis subsp. inaquosorum strain. Microbiol Res 216:40–46.  https://doi.org/10.1016/j.micres.2018.08.001 CrossRefPubMedGoogle Scholar
  19. Koo BM, Kritikos G, Farelli JD, Todor H, Tong K, Kimsey H, Wapinski I, Galardini M, Cabal A, Peters JM, Hachmann AB, Rudner DZ, Allen KN, Typas A, Gross CA (2017) Construction and analysis of two genome-scale deletion libraries for Bacillus subtilis. Cell Syst 4:291.e297–305.e297.  https://doi.org/10.1016/j.cels.2016.12.013 CrossRefGoogle Scholar
  20. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549.  https://doi.org/10.1093/molbev/msy096 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lee I, Kim YO, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103.  https://doi.org/10.1099/ijsem.0.000760 CrossRefPubMedGoogle Scholar
  22. Liu Y, Du J, Lai Q, Zeng R, Ye D, Xu J, Shao Z (2017) Proposal of nine novel species of the Bacillus cereus group. Int J Syst Evolut Microbiol 67:2499–2508.  https://doi.org/10.1099/ijsem.0.001821 CrossRefGoogle Scholar
  23. Logan NA, Berge O, Bishop AH, Busse HJ, De Vos P, Fritze D, Heyndrickx M, Kämpfer P, Rabinovitch L, Salkinoja-Salonen MS, Seldin L, Ventosa A (2009) Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59:2114–2121.  https://doi.org/10.1099/ijs.0.013649-0 CrossRefPubMedGoogle Scholar
  24. May JJ, Wendrich TM, Marahiel MA (2001) The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. J Biol Chem 276:7209–7217.  https://doi.org/10.1074/jbc.M009140200 CrossRefPubMedGoogle Scholar
  25. Mhammedi A, Peypoux F, Besson F, Michel G (1982) Bacillomycin f, a new antibiotic of iturin group: isolation and characterization. J Antibiot 35:306–311.  https://doi.org/10.7164/antibiotics.35.306 CrossRefPubMedGoogle Scholar
  26. Miethke M, Klotz O, Linne U, May JJ, Beckering CL, Marahiel MA (2006) Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis. Mol Microbiol 61:1413–1427.  https://doi.org/10.1111/j.1365-2958.2006.05321.x CrossRefPubMedGoogle Scholar
  27. Moore CM, Gaballa A, Hui M, Ye RW, Helmann JD (2005) Genetic and physiological responses of Bacillus subtilis to metal ion stress. Mol Microbiol 57:27–40.  https://doi.org/10.1111/j.1365-2958.2005.04642.x CrossRefPubMedGoogle Scholar
  28. Nakamura LK, Roberts MS, Cohan FM (1999) Note: relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp. subtilis subsp. nov. and Bacillus subtilis subsp. spizizenii subsp. nov. Int J Syst Evol Microbiol 49:1211–1215Google Scholar
  29. Nicolas P, Mader U, Dervyn E, Rochat T, Leduc A, Pigeonneau N, Bidnenko E, Marchadier E, Hoebeke M, Aymerich S, Becher D, Bisicchia P, Botella E, Delumeau O, Doherty G, Denham EL, Fogg MJ, Fromion V, Goelzer A, Hansen A, Hartig E, Harwood CR, Homuth G, Jarmer H, Jules M, Klipp E, Le Chat L, Lecointe F, Lewis P, Liebermeister W, March A, Mars RA, Nannapaneni P, Noone D, Pohl S, Rinn B, Rugheimer F, Sappa PK, Samson F, Schaffer M, Schwikowski B, Steil L, Stulke J, Wiegert T, Devine KM, Wilkinson AJ, van Dijl JM, Hecker M, Volker U, Bessieres P, Noirot P (2012) Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 335:1103–1106.  https://doi.org/10.1126/science.1206848 CrossRefPubMedGoogle Scholar
  30. Peters JM, Colavin A, Shi H, Czarny TL, Larson MH, Wong S, Hawkins JS, Lu CHS, Koo BM, Marta E, Shiver AL, Whitehead EH, Weissman JS, Brown ED, Qi LS, Huang KC, Gross CA (2016) A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell 165:1493–1506.  https://doi.org/10.1016/j.cell.2016.05.003 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131.  https://doi.org/10.1073/pnas.0906412106 CrossRefPubMedGoogle Scholar
  32. Rooney AP, Price NPJ, Ehrhardt C, Sewzey JL, Bannan JD (2009) Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov. Int J Syst Evol Microbiol 59:2429–2436.  https://doi.org/10.1099/ijs.0.009126-0 CrossRefPubMedGoogle Scholar
  33. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477PubMedPubMedCentralGoogle Scholar
  34. Steinborn G, Hajirezaei MR, Hofemeister J (2005) Bac genes for recombinant bacilysin and anticapsin production in Bacillus host strains. Arch Microbiol 183:71–79.  https://doi.org/10.1007/s00203-004-0743-8 CrossRefPubMedGoogle Scholar
  35. Steller S, Vollenbroich D, Leenders F, Stein T, Conrad B, Hofemeister J, Jacques P, Thonart P, Vater J (1999) Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chem Biol 6:31–41.  https://doi.org/10.1016/S1074-5521(99)80018-0 CrossRefPubMedGoogle Scholar
  36. Vetter ND, Langill DM, Anjum S, Boisvert-Martel J, Jagdhane RC, Omene E, Zheng H, van Straaten KE, Asiamah I, Krol ES, Sanders DA, Palmer DR (2013) A previously unrecognized kanosamine biosynthesis pathway in Bacillus subtilis. J Am Chem Soc 135:5970–5973.  https://doi.org/10.1021/ja4010255 CrossRefPubMedGoogle Scholar
  37. Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (2009) Volume 3. Bergey’s manual of systematic bacteriology, second edition, The FirmicutesGoogle Scholar
  38. Yi H, Chun J, Cha C-J (2014) Genomic insights into the taxonomic status of the three subspecies of Bacillus subtilis. Syst Appl Microbiol 37:95–99.  https://doi.org/10.1016/j.syapm.2013.09.006 CrossRefPubMedGoogle Scholar
  39. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617CrossRefGoogle Scholar
  40. Zeigler DR, Pragai Z, Rodriguez S, Chevreux B, Muffler A, Albert T, Bai R, Wyss M, Perkins JB (2008) The origins of 168, W23, and other Bacillus subtilis legacy strains. J Bacteriol 190:6983–6995.  https://doi.org/10.1128/jb.00722-08 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Zhu B, Stulke J (2018) SubtiWiki in 2018: from genes and proteins to functional network annotation of the model organism Bacillus subtilis. Nucleic Acids Res 46:D743–D748.  https://doi.org/10.1093/nar/gkx908 CrossRefPubMedGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research ServiceUnited States Department of AgriculturePeoriaUSA
  2. 2.Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research ServiceUnited States Department of AgriculturePeoriaUSA
  3. 3.Bacillus Genetic Stock CenterThe Ohio State UniversityColumbusUSA

Personalised recommendations