Advertisement

Antonie van Leeuwenhoek

, Volume 112, Issue 7, pp 1055–1065 | Cite as

Detection and virulence potential of a phospholipase D-negative Corynebacterium ulcerans from a concurrent diphtheria and infectious mononucleosis case

  • Liliane Simpson-Lourêdo
  • Cecília M. F. Silva
  • Elena Hacker
  • Nadjla F. Souza
  • Milena M. Santana
  • Camila A. Antunes
  • Prescilla E. Nagao
  • Raphael HirataJr.
  • Andreas Burkovski
  • Maria Helena S. Villas Bôas
  • Ana Luíza Mattos-GuaraldiEmail author
Original Paper

Abstract

Diphtheria by Corynebacterium ulcerans is increasingly occurring in children, adolescents and adults. In addition to diphtheria toxin (DT), phospholipase D (PLD) is considered a virulence factor of C. ulcerans. In the present study, a first case of concurrent diphtheria by a PLD-negative C. ulcerans and infectious mononucleosis (IM) was verified. Clinical and microbiological profiles and binding properties to human Fibrinogen (Fbg), Fibronectin (Fn) and type I collagen (col I) biotinylated proteins and virulence to Caenorhabditis elegans were investigated for C. ulcerans strain 2590 (clinical isolate) and two control strains, including PLD-positive BR-AD22 wild type and PLD-negative ELHA-1 PLD mutant strains. MALDI-TOF assays and a multiplex PCR of genes coding for potentially toxigenic corynebacteria identified strain 2590 as non-DT producing. Interestingly, strain 2590 did not express PLD activity in the CAMP test although the presence of the pld gene was verified. PLD-negative 2590 and a PLD-positive 210932 strains showed similar affinity to Fbg, Fn and type I collagen. C. elegans were able to escape from C. ulcerans strains, independent of PLD and DT production. Higher mortality of nematodes was verified for PLD-negative strains. Additional studies concerning multifactorial virulence potential of C. ulcerans, including environmental conditions remain necessary.

Keywords

Co-infection Corynebacterium ulcerans Diphtheria Infectious mononucleosis Virulence factors Zoonosis 

Notes

Acknowledgements

This study was financied in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Programa Estratégico de Apoio à Pesquisa em Saúde - Fundação Oswaldo Cruz (PAPES V-FIOCRUZ), Sub-Reitoria de Pós-graduação e Pesquisa da Universidade do Estado do Rio de Janeiro (SR-2/UERJ) and Friedrich-Alexander Universität-Erlangen-Nürnberg (FAU).

Author’s contribution

Conceived of or designed study: Liliane Simpson-Lourêdo, Maria Helena S. Villas Bôas, Ana Luíza Mattos-Guaraldi. Performed research: Liliane Simpson-Lourêdo, Cecília M.F. Silva, Nadjla F. Souza, Milena M. Santana. Analysed data: Liliane Simpson-Lourêdo, Raphael Hirata Jr, Andreas Burkovski, Maria Helena S. Villas Bôas, Ana Luíza Mattos-Guaraldi. Contributed new methods or models: Camila A. Antunes, Elena Hacker, Prescilla E. Nagao. Wrote the paper: Liliane Simpson-Lourêdo, Maria Helena S. Villas Bôas, Ana Luíza Mattos-Guaraldi.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study (CAAE 44674314.3.3001.5091) was approved by the Research Ethics Committee of Hospital Universitário Pedro Ernesto/Universidade do Estado do Rio de Janeiro. The consent to participate was not required because the investigated isolate was taken as a part of standard care (diagnostic purposes).

References

  1. Alibi S, Ferjani A, Gaillot O, Marzouk M, Courcol R, Boukadida J (2015) Identification of clinically relevant Corynebacterium strains by Api Coryne, MALDI-TOF-mass spectrometry and molecular approaches. Pathol Biol 63:153–157CrossRefPubMedGoogle Scholar
  2. Antunes CA, Clark L, Wanuske MT et al (2016) Caenorhabditis elegans star formation and negative chemotaxis induced by infection with corynebacterial. Microbiology 162:84–93CrossRefPubMedGoogle Scholar
  3. Bonmarin I, Guiso N, Le Flèche-Matéos A, Patey O, Patrick AD, Levy-Bruhl D (2009) Diphtheria: a zoonotic disease in France? Vaccine 27:4196–4200CrossRefPubMedGoogle Scholar
  4. Clinical Laboratory Standards Institute (CLSI) (2015) Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria, approved guideline. CLSI document M45. ISBN 1-56238-917-3Google Scholar
  5. Dias AA, Santos LS, Sabbadini PS et al (2011a) Corynebacterium ulcerans: an emerging zoonosis in Brazil and worldwide. Rev Saude Publica 45:1176–1191.  https://doi.org/10.1590/S0034-89102011000600021 CrossRefPubMedGoogle Scholar
  6. Dias AA, Silva FC Jr, Santos LS et al (2011b) Strain-dependent arthritogenic potential of the zoonotic pathogen Corynebacterium ulcerans. Vet Microbiol 53:323–331.  https://doi.org/10.1016/j.vetmic.2011.06.007 CrossRefGoogle Scholar
  7. Dodd W, Tang L, Lone JC et al (2018) A damage sensor associated with the cuticle coordinates three core environmental stress responses in Caenorhabditis elegans. Genetics 208:1467–1482CrossRefPubMedPubMedCentralGoogle Scholar
  8. Hacker E, Ott L, Hasselt K, Mattos-Guaraldi AL, Tauch A, Burkovski A (2015) Colonization of human epithelial cell lines by Corynebacterium ulcerans from human and animal sources. Microbiology 161:1582–1589CrossRefPubMedGoogle Scholar
  9. Haight K, Holden FA (1982) When infections co-exist: infectious mono and diphtheria. Can Fam Phys 28:785–788Google Scholar
  10. Hodgson AL, Tachedjian M, Corner LA, Radford AJ (1994) Protection of sheep against caseous lymphadenitis by use of a single oral dose of live recombinant Corynebacterium pseudotuberculosis. Infect Immun 62:5275–5280PubMedPubMedCentralGoogle Scholar
  11. Jacob-John T (2008) Resurgence of diphtheria in India in the 21st century. Indian J Med Res 128:669–670PubMedGoogle Scholar
  12. Katsukawa C, Komiya T, Yamagishi H et al (2012) Prevalence of Corynebacterium ulcerans in dogs in Osaka, Japan. J Med Microbiol 61:266–273CrossRefPubMedGoogle Scholar
  13. Konrad R, Berger A, Huber I et al (2010) Matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry as a tool for rapid diagnosis of potentially toxigenic Corynebacterium species in the laboratory management of diphtheria-associated bacteria. Eur Surveill 15(43):19699CrossRefGoogle Scholar
  14. Konrad S, Hörmansdorfer S, Sing A (2015) Possible human-to-human transmission of toxigenic Corynebacterium ulcerans. Clin Microbiol Infect 21:768–771CrossRefPubMedGoogle Scholar
  15. Mattos-Guaraldi AL, Sampaio JL, Santos CS et al (2008) First detection of Corynebacterium ulcerans producing diphtheria-like toxin in human with pulmonary infection in Rio De Janeiro metropolitan area, Brazil. Mem Inst Oswaldo Cruz 103:396–400CrossRefPubMedGoogle Scholar
  16. Mattos-Guaraldi AL, Damasco PV, Gomes DL et al (2011) Concurrent diphtheria and infectious mononucleosis: difficulties for management, investigation and control of diphtheria in developing countries. J Med Microbiol 60:1685–1688CrossRefPubMedGoogle Scholar
  17. Mattos-Guaraldi AL, Hirata R Jr, Azevedo VA (2013) Corynebacterium diphtheriae, Corynebacterium ulcerans and Corynebacterium pseudotuberculosis—general aspects. In: Burkovski A (ed) Corynebacterium diphtheriae and related toxigenic species. Springer, Erlangen, pp 15–27Google Scholar
  18. McKean SC, Davies JK, Moore RJ (2007) Expression of phospholipase D, the major virulence factor of Corynebacterium pseudotuberculosis, is regulated by multiple environmental factors and plays a role in macrophage death. Microbiology 153:2203–2211CrossRefPubMedGoogle Scholar
  19. McNamara PJ, Cuevas WA, Songer JG (1995) Toxic phospholipases D of Corynebacterium pseudotuberculosis, C. ulcerans and Arcanobacterium haemolyticum: cloning and sequence homology. Gene 14:113–118.  https://doi.org/10.1016/0378-1119(95)00002-N CrossRefGoogle Scholar
  20. Ott L, McKenzie A, Baltazar MT et al (2012) Evaluation of invertebrate infection models for pathogenic corynebacteria. FEMS Immunol Med Microbiol 65:413–421CrossRefPubMedGoogle Scholar
  21. Pacheco LG, Pena RR, Castro TL et al (2007) Multiplex PCR assay for identification of Corynebacterium pseudotuberculosis from pure cultures and for rapid detection of this pathogen in clinical samples. J Med Microbiol 56:480–486CrossRefPubMedGoogle Scholar
  22. Pereira GA, Pimenta FP, Santos FR et al (2008) Antimicrobial resistance among Brazilian Corynebacterium diphtheriae strains. Mem Inst Oswaldo Cruz 103:507–510CrossRefPubMedGoogle Scholar
  23. Perkins S, Cordery R, Nixon G et al (2010) Investigations and control measures following a non-travel-associated case of toxigenic Corynebacterium diphtheriae, London, United Kingdom, December 2009–January 2010. Euro Surveill 15:19544.  https://doi.org/10.2807/ese.15.16.19544-en CrossRefPubMedGoogle Scholar
  24. Pimenta FP, Souza MC, Pereira GA et al (2008) DNase test as a novel approach for the routine screening of Corynebacterium diphtheriae. Lett Appl Microbiol 46:307–311CrossRefPubMedGoogle Scholar
  25. Simpson-Louredo L, Ramos JN, Peixoto RS (2014) Corynebacterium ulcerans isolates from humans and dogs: fibrinogen, fibronectin and collagen-binding, antimicrobial and PFGE profiles. Antonie Van Leeuwenhoek 105:343–352CrossRefPubMedGoogle Scholar
  26. Torres LCF, Ribeiro D, Hirata R Jr et al (2013) Multiplex polymerase chain reaction to identify and determine the toxigenicity of Corynebacterium spp with zoonotic potential and an overview of human and animal infections. Mem Inst Oswaldo Cruz 108:272–279CrossRefPubMedCentralGoogle Scholar
  27. Trost E, Arwa Al-Dilaimi A, Papavasiliou P et al (2011) Comparative analysis of two complete Corynebacterium ulcerans genomes and detection of candidate virulence factors. BMC Genom 12:383CrossRefGoogle Scholar
  28. Wagner KS, White JM, Lucenko I et al (2012) Diphtheriae in the postepidemic period, Europe, 2000–2009. Emerg Infect Dis 18:217–225CrossRefPubMedPubMedCentralGoogle Scholar
  29. World Health Organization (WHO) (2018) Diphtheria reported cases. http://apps.who.int/immunization_monitoring/globalsummary/timeseries/tsincidencediphtheria.html. Accessed 01 Sept 2018
  30. Yasuda I, Matsuyama H, Ishifuji T et al (2018) Severe pneumonia caused by toxigenic Corynebacterium ulcerans infection, Japan. Emerg Infect Dis 24:588–591CrossRefPubMedPubMedCentralGoogle Scholar
  31. Zakikhany K, Efstratiou A (2012) Diphtheria in Europe: current problems and new challenges. Future Microbiol 7:595–607CrossRefPubMedGoogle Scholar
  32. Zamiri I, McEntegar MGT (1972) The sensitivity of diphtheria bacilli to eight antibiotics. J Clin Path 25:716–717CrossRefPubMedGoogle Scholar
  33. Zou C-G, Tu Q, Niu J, Ji X-L, Zhang K-Q (2013) The DAF-16/FOXO transcription factor functions as a regulator of epidermal innate immunity. PLoS Pathog 9:e1003660.  https://doi.org/10.1371/journal.ppat.1003660 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Liliane Simpson-Lourêdo
    • 1
    • 2
    • 3
  • Cecília M. F. Silva
    • 2
  • Elena Hacker
    • 3
  • Nadjla F. Souza
    • 4
  • Milena M. Santana
    • 4
  • Camila A. Antunes
    • 2
    • 3
  • Prescilla E. Nagao
    • 5
  • Raphael HirataJr.
    • 2
  • Andreas Burkovski
    • 3
  • Maria Helena S. Villas Bôas
    • 1
  • Ana Luíza Mattos-Guaraldi
    • 6
    Email author
  1. 1.Microbiology Department, National Institute for Quality Control in HealthFundação Oswaldo CruzRio de JaneiroBrazil
  2. 2.Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, School of Medical SciencesUERJRio de JaneiroBrazil
  3. 3.Microbiology Department, Friedrich-Alexander Universität-Erlangen-NürnbergErlangenGermany
  4. 4.Central Laboratory of Public HealthRecifeBrazil
  5. 5.Laboratory of Molecular Biology and Phisiology of Streptococcus- Institute of Biology Roberto Alcantara GomesUERJRio de JaneiroBrazil
  6. 6.Laboratory of Diphtheria and Corynebacteria of Clinical Relevance - Faculdade de Ciências MédicasUniversidade do Estado do Rio de Janeiro – UERJRio de JaneiroBrazil

Personalised recommendations