Pontibacter chitinilyticus sp. nov., a novel chitin-hydrolysing bacterium isolated from soil

  • Geeta Chhetri
  • Jiyoun Kim
  • Inhyup Kim
  • Myung Kyum Kim
  • Taegun SeoEmail author
Original Paper


A Gram-stain negative, non-motile, orange-red-pigmented, asporogenous, rod-shaped bacterial strain, designated 17gy-14T, was isolated from a soil sample collected from a Seoul Women’s University field. The strain can grow at 7–37 °C, pH 6.0–8.0, and can tolerate up to 5.5% (w/v) NaCl concentration. Flexirubin-type pigments were absent. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain 17gy-14T strain belongs to the genus Pontibacter in the family Cytophagaceae with sequence similarities ranging from 95.4 to 92.9% with other type strains of the genus Pontibacter. The predominant cellular fatty acids were identified as iso-C15:0, anteiso-C15:0, iso-C17:0 3-OH and summed feature 4 (comprising iso-C17:1 I/anteiso-C17:1 B). The predominant menaquinone was identified as MK-7. The DNA G+C content was determined to be 48.7 mol%. The major polar lipid was found to be phosphatidylethanolamine. Based on phenotypic, chemotaxonomic and phylogenetic analyses, strain 17gy-14T is concluded to represent a novel species of the genus Pontibacter in the phylum Bacteroidetes, for which the name Pontibacter chitinilyticus sp. nov. is proposed. The type strain is 17gy-14T (=KCTC 52914T=NRBC 113056T).


Pontibacter chitinilyticus sp. nov Chitin hydrolysis Polyphasic taxonomy Cytophagaceae Soil bacteria 



This work was supported by a research grant from Seoul Women’s University (2018) and the Project on Survey of Indigenous Species of Korea of the National Institute of Biological Resources (NIBR) under the Ministry of Environment (MOE) (NIBR201701206). We thank Prof Dr. Bernhard Schink (University of Konstanz, Konstanz, Germany) for the suggested species name.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical standard

This study does not describe any experimental work related to human.

Supplementary material

10482_2019_1235_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1615 kb)


  1. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman J et al (eds) (1995) Short protocols in molecular biology: a compendium of methods from current protocols in molecular biology, 3rd edn. Wiley, New YorkGoogle Scholar
  2. Bernardet JF, Nakagawa Y, Holmes B, Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070Google Scholar
  3. Breznak JA, Costilow RN (2007) Physicochemical factors in growth. In: Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR (eds) Methods for general and molecular bacteriology, 3rd edn. American Society for Microbiology, Washington, DC, pp 309–329Google Scholar
  4. Cao H, Nie Y, Zeng XC, Xu L, He Z et al (2014) Pontibacter yuliensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 64:968–972CrossRefGoogle Scholar
  5. Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354Google Scholar
  6. Dahal RH, Kim J (2017) Microvirga soli sp. nov., a novel alphaproteobacterium isolated from soil. Int J Syst Evol Microbiol 67:127–132CrossRefGoogle Scholar
  7. Fautz E, Reichenbach H (1980) A simple test for flexirubin-type pigments. FEMS Microbiol Lett 8:87–91CrossRefGoogle Scholar
  8. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  9. Hiraishi A, Ueda Y, Ishihara J, Mori T (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by highperformance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469CrossRefGoogle Scholar
  10. Joung Y, Kim H, Ahn TS, Joh K (2011) Pontibacter salisaro sp., nov Isolated from a clay tablet solar saltern in Korea. J Microbiol 49:290–293CrossRefGoogle Scholar
  11. Joung Y, Kim H, Lee BI, Kang H, Jang TY, Kwon OS, Joh K (2013) Pontibacter jeungdoensis sp nov., Isolated from a Solar Saltern in Korea. J Microbiol 51:531–535CrossRefGoogle Scholar
  12. Kang JY, Joung Y, Chun J, Kim H, Joh K et al (2013) Pontibacter saemangeumensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 63:565–569CrossRefGoogle Scholar
  13. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbial 62:716–721CrossRefGoogle Scholar
  14. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefGoogle Scholar
  15. Komagata K, Suzuki KI (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–205CrossRefGoogle Scholar
  16. Kumar S, Stecher G, Tamura K (2016) Mega 7: molecular evolutionary genetics analysis in version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  17. Kuykendall LD, Roy MA, O’Neill JJ, Devine TE (1988) Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Evol Microbiol 38:358–361Google Scholar
  18. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  19. Nedashkovskaya OI, Kim SB, Suzuki M, Shevchenko LS, Lee MS et al (2005) Pontibacter actiniarum gen. nov., sp. nov., a novel member of the phylum ‘Bacteroidetes’, and proposal of Reichenbachiella gen. nov. as a replacement for the illegitimate prokaryotic generic name Reichenbachia Nedashkovskaya et al. 2003. Int J Syst Evol Microbiol 55:2583–2588CrossRefGoogle Scholar
  20. Park S, Park JM, Lee KH, Yoon JH (2016) Pontibacter litorisediminis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 66:4172–4178CrossRefGoogle Scholar
  21. Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9:945–967Google Scholar
  22. Singh P, Kumari R, Nayyar N, Lal R (2017) Pontibacter aurantiacus sp. nov. isolated from hexachlorocyclohexane (HCH) contaminated soil. Int J Syst Evol Microbial 2017(67):1400–1407Google Scholar
  23. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654Google Scholar
  24. Subhash Y, Tushar L, Sasikala C, Ramana CV (2013) Erythrobacter odishensis sp nov and Pontibacter odishensis sp nov isolated from dry soil of a solar saltern. Int J Syst Evol Microbiol 63:4524–4532CrossRefGoogle Scholar
  25. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefGoogle Scholar
  26. Wang Y, Zhang K, Cai F, Zhang L, Tang Y, Dai J, Fang C (2010) Pontibacter xinjiangensis sp. nov., in the phylum ‘Bacteroidetes’, and reclassification of [Effluviibacter] roseus as Pontibacter roseus comb. nov. Int J Syst Evol Microbiol 60:99–103CrossRefGoogle Scholar
  27. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703CrossRefGoogle Scholar
  28. Xu LH, Zeng XC, Nie Y, Luo XS, Zhou EM, Zhou LL, Pan YF, Li WJ (2014) Pontibacter diazotrophicus sp nov., a novel nitrogen-fixing bacterium of the family Cytophagaceae. PLoS ONE 9:1–9Google Scholar
  29. Zhang L, Zhang Q, Luo X, Tang Y, Dai J et al (2008) Pontibacter korlensis sp. nov., isolated from the desert of Xinjiang. China. Int J Syst Evol Microbiol 58:1210–1214CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Geeta Chhetri
    • 1
  • Jiyoun Kim
    • 1
  • Inhyup Kim
    • 1
  • Myung Kyum Kim
    • 2
  • Taegun Seo
    • 1
    Email author
  1. 1.Department of Life ScienceDongguk University-SeoulGoyangSouth Korea
  2. 2.Department of Bio and Environmental Technology, College of Natural ScienceSeoul Women’s UniversitySeoulSouth Korea

Personalised recommendations