Edaphocola aurantiacus gen. nov., sp. nov., a new member of the family Chitinophagaceae isolated from wetland soil in South Korea

  • Jiwon Choi
  • Seho Cha
  • Geeta Chhetri
  • Dahye Yang
  • Taegun SeoEmail author
Original Paper


A short rod-shaped, yellow–orange pigmented, strictly aerobic bacterium, designated as strain H2T, was isolated from the wetland soil of Halla Mountain, Jeju-island, South Korea. Growth was observed at temperatures of 10–30 °C (optimum at 25–30 °C), pH of 6–8 (optimum at pH 7), and salt concentrations of 0–1% (w/v) NaCl (optimum at 0%). The strain H2T was found to be a catalase and oxidase-positive, non-motile, Gram-negative bacterium. On the basis of 16S rRNA gene sequence similarity and phylogenetic analysis, strain H2T was found to be related to the members of the Chitinophagaceae family, being closely related to Taibaiella chishuiensis AY17T (94.3% sequence similarity). The major polar lipids are phosphatidylethanolamine and glycolipid. Strain H2T contained MK-7 as the only menaquinone as well as iso-C15:0, iso-C15:1 G and iso-C17:0 3-OH as the major fatty acids (> 15%). The DNA G+C content of strain H2T was determined to be 48.3 mol%. Based on the phylogenetic, phenotypic characteristics and chemotaxonomic analysis data, strain H2T (= KCTC 62115T = JCM 32353T) should be classified as representative of a novel species of a novel genus within the family Chitinophagaceae, for which the name Edaphocola aurantiacus gen. nov., sp. nov., is proposed.


Chitinophagaceae Novel genus Novel species Edaphocola 



We are grateful to Dr. Bernhard Schink for helping us with etymology. This research was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MIST) (NRF-2017R1A2B4009448).

Author contributions

JC isolated the bacterium, designed the study, performed the phenotypic and biochemical characterization, wrote the original draft; SC, GC and DY helped the analysis of taxonomic data; TS designed and supervised the study, edited the original draft.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10482_2018_1199_MOESM1_ESM.pptx (47 kb)
Supplementary material 1 (PPTX 47 kb)
10482_2018_1199_MOESM2_ESM.docx (2.5 mb)
Supplementary material 2 (DOCX 2607 kb)


  1. Albert RA, Zitomer D, Dollhopf M, Schauer-Gimenez AE, Struble C, King M, Son S, Langer S, Busse HJ (2014) Proposal of Vibrionimonas magnilacihabitans gen. nov., sp. nov., a curved Gram-stain-negative bacterium isolated from lake water. Int J Syst Evol Microbiol 64:613–620CrossRefGoogle Scholar
  2. Anders H, Dunfield PF, Lagutin K, Houghton KM, Power JF, Mackenzie AD, Vyssotski M, Ryan JL, Hanssen EG, Moreau JW, Stott MB (2014) Thermoflavifilum aggregans gen. nov., sp. nov., a thermophilic and slightly halophilic filamentous bacterium from the phylum Bacteroidetes. Int J Syst Evol Microbiol 64:1264–1270CrossRefGoogle Scholar
  3. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman J (eds) (1995) Short protocols in molecular biology: a compendium of methods from current protocols in molecular biology, 3rd edn. Wiley, New YorkGoogle Scholar
  4. Chaudhary DK, Kim J (2016) Arvibacter flaviflagrans gen. nov., sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 66:4347–4354CrossRefGoogle Scholar
  5. Chung EJ, Park TS, Jeon CO, Chung YR (2012) Chitinophaga oryziterrae sp. nov., isolated from the rhizosphere soil of rice (Oryza sativa L.). Int J Syst Evol Microbiol 62:3030–3035CrossRefGoogle Scholar
  6. Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45:316–354PubMedPubMedCentralGoogle Scholar
  7. Eder W, Peplies J, Wanner G, Fruhling A, Verbarg S (2015) Hydrobacter penzbergensis gen. nov., sp. nov., isolated from purified water. Int J Syst Evol Microbiol 65:920–926CrossRefGoogle Scholar
  8. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  9. Gonzalez JM, Saiz-Jimenez C (2002) A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773CrossRefGoogle Scholar
  10. Hall T (1997) BioEdit. Biological sequence alignment editor for Win 95/98/NT/2K/XP. Ibis Therapeutics, CarlsbadGoogle Scholar
  11. Han JH, Baek K, Lee MH (2017) Lacibacter nakdongensis sp. nov., isolated from river sediment. Int J Syst Evol Microbiol 67:352–356CrossRefGoogle Scholar
  12. Hanada S, Tamaki H, Nakamura K, Kamagata Y (2014) Crenotalea thermophila gen. nov., sp. nov., a member of the family Chitinophagaceae isolated from a hot spring. Int J Syst Evol Microbiol 64:1359–1364CrossRefGoogle Scholar
  13. Hiraishi A, Ueda Y, Ishihara J, Mori T (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by highperformance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469CrossRefGoogle Scholar
  14. Jin L, Shin SY, Lee HG, Ahn CY, Oh HM (2013) Lacibacter daechungensis sp. nov., isolated from deep freshwater of a reservoir. Int J Syst Evol Microbiol 63:4519–4523CrossRefGoogle Scholar
  15. Kampfer P, Young CC, Sridhar KR, Arun AB, Lai WA, Shen FT, Rekha PD (2006) Transfer of [Flexibacter] sancti, [Flexibacter] filiformis, [Flexibacter] japonensis and [Cytophaga] arvensicola to the genus Chitinophaga and description of Chitinophaga skermanii sp. nov. Int J Syst Evol Microbiol 56:2223–2228CrossRefGoogle Scholar
  16. Kampfer P, Lodders N, Falsen E (2011) Hydrotalea flava gen. nov., sp. nov., a new member of the phylum Bacteroidetes and allocation of the genera Chitinophaga, Sediminibacterium, Lacibacter, Flavihumibacter, Flavisolibacter, Niabella, Niastella, Segetibacter, Parasegetibacter, Terrimonas, Ferruginibacter, Filimonas and Hydrotalea to the family Chitinophagaceae fam. nov. Int J Syst Evol Microbiol 61:518–523CrossRefGoogle Scholar
  17. Kang H, Kim H, Joung Y, Joh K (2016) Parasediminibacterium paludis gen. nov., sp. nov., isolated from wetland. Int J Syst Evol Microbiol 66:326–331CrossRefGoogle Scholar
  18. Kim MK, Kim TS, Joung Y, Han JH, Kim SB (2016) Taibaiella soli sp. nov., isolated from pine forest soil. Int J Syst Evol Microbiol 66:3230–3234CrossRefGoogle Scholar
  19. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefGoogle Scholar
  20. Komagata K, Suzuki KI (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–205CrossRefGoogle Scholar
  21. Krieg NR, Ludwig W, Whitman W, Hedlund BP, Paster BJ, Staley JT, Ward N, Brown D, Parte A (eds) (2010) Bergey’s manual of systematic bacteriology, volume 4. The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes, vol 4. Springer, Berlin, pp 351–358Google Scholar
  22. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  23. Kuykendall LD, Roy MA, O’Neill JJ, Devine TE (1988) Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Evol Microbiol 38:358–361Google Scholar
  24. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefGoogle Scholar
  25. Lee HG, An DS, Im WT, Liu QM, Na JR, Cho DH, Jin CW, Lee ST, Yang DC (2007) Chitinophaga ginsengisegetis sp. nov. and Chitinophaga ginsengisoli sp. nov., isolated from soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 57:1396–1401CrossRefGoogle Scholar
  26. Madhaiyan M, Poonguzhali S, Senthilkumar M, Pragatheswari D, Lee JS, Lee KC (2015) Arachidicoccus rhizosphaerae gen. nov., sp. nov., a plant-growth-promoting bacterium in the family Chitinophagaceae isolated from rhizosphere soil. Int J Syst Evol Microbiol 65:578–586CrossRefGoogle Scholar
  27. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  28. Powers EM (1995) Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61:3756–3758PubMedPubMedCentralGoogle Scholar
  29. Qu JH, Yuan HL, Yang JS, Li HF, Chen N (2009) Lacibacter cauensis gen. nov., sp. nov., a novel member of the phylum Bacteroidetes isolated from sediment of a eutrophic lake. Int J Syst Evol Microbiol 59:1153–1157CrossRefGoogle Scholar
  30. Rosselló-Móra R, Trujillo ME, Sutcliffe IC (2017) Introducing a digital protologue: timely move towards a database-driven systematics of archaea and bacteria. Syst Appl Microbiol 40:121–122CrossRefGoogle Scholar
  31. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  32. Siddiqi MZ, Muhammad Shafi S, Choi KD, Im WT (2016) Panacibacter ginsenosidivorans gen. nov., sp. nov., with ginsenoside converting activity isolated from soil of a ginseng field. Int J Syst Evol Microbiol 66:4039–4045CrossRefGoogle Scholar
  33. Siddiqi MZ, Aslam Z, Im WT (2017) Arachidicoccus ginsenosidivorans sp. nov., with ginsenoside-converting activity isolated from ginseng cultivating soil. Int J Syst Evol Microbiol 67:1005–1010CrossRefGoogle Scholar
  34. Singh H, Du J, Won K, Yang JE, Akter S, Kim KY, Yin C, Yi TH (2015) Taibaiella yonginensis sp. nov., a bacterium isolated from soil of Yongin city. Antonie Van Leeuwenhoek 108:517–524CrossRefGoogle Scholar
  35. Sly LI, Taghavi M, Fegan M (1999) Phylogenetic position of Chitinophaga pinensis in the Flexibacter-Bacteroides-Cytophaga phylum. Int J Syst Bacteriol 49(Pt 2):479–481CrossRefGoogle Scholar
  36. Son HM, Kook M, Kim JH, Yi TH (2014) Taibaiella koreensis sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 64:1018–1023CrossRefGoogle Scholar
  37. Szabo I, Szoboszlay S, Tancsics A, Szerdahelyi SG, Szucs A, Rado J, Benedek T, Szabo L, Daood HG, Cserhati M, Kriszt B (2016) Taibaiella coffeisoli sp. nov., isolated from the soil of a coffee plantation. Int J Syst Evol Microbiol 66:1627–1632CrossRefGoogle Scholar
  38. Tan X, Zhang RG, Meng TY, Liang HZ, Lv J (2014) Taibaiella chishuiensis sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 64:1795–1801CrossRefGoogle Scholar
  39. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703CrossRefGoogle Scholar
  40. Weon HY, Yoo SH, Kim YJ, Son JA, Kim BY, Kwon SW, Koo BS (2009) Chitinophaga niabensis sp. nov. and Chitinophaga niastensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 59:1267–1271CrossRefGoogle Scholar
  41. Weon HY, Kwon SW, Son JA, Kim SJ, Kim YS, Kim BY, Ka JO (2010) Adhaeribacter aerophilus sp. nov., Adhaeribacter aerolatus sp. nov. and Segetibacter aerophilus sp. nov., isolated from air samples. Int J Syst Evol Microbiol 60:2424–2429CrossRefGoogle Scholar
  42. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer KH, Whitman WB, Euzéby J, Amann R, Rosselló-Móra R (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12:635–645CrossRefGoogle Scholar
  43. Yasir M, Chung EJ, Song GC, Bibi F, Jeon CO, Chung YR (2011) Chitinophaga eiseniae sp. nov., isolated from vermicompost. Int J Syst Evol Microbiol 61:2373–2378CrossRefGoogle Scholar
  44. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617CrossRefGoogle Scholar
  45. Zhang L, Wang Y, Wei L, Wang Y, Shen X, Li S (2013) Taibaiella smilacinae gen. nov., sp. nov., an endophytic member of the family Chitinophagaceae isolated from the stem of Smilacina japonica, and emended description of Flavihumibacter petaseus. Int J Syst Evol Microbiol 63:3769–3776CrossRefGoogle Scholar
  46. Zhao R, Chen XY, Li XD, Tian Y, Kong BH, Chen ZL, Li YH (2014) Cnuella takakiae gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from Takakia lepidozioides. Int J Syst Evol Microbiol 64:607–612CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jiwon Choi
    • 1
  • Seho Cha
    • 1
  • Geeta Chhetri
    • 1
  • Dahye Yang
    • 1
  • Taegun Seo
    • 1
    Email author
  1. 1.Department of Life ScienceDongguk University-SeoulGoyangSouth Korea

Personalised recommendations