Antonie van Leeuwenhoek

, Volume 112, Issue 4, pp 589–598 | Cite as

Yeast molecular chaperone gene SSB2 is involved in the endoplasmic reticulum stress response

  • Wei Zhao
  • Hong-Jing Cui
  • Kun-Pei Qiu
  • Tao Zhou
  • Xiao-Shan Hong
  • Xin-Guang LiuEmail author
Original Paper


The Saccharomyces cerevisiae chaperone gene SSB2 belongs to the Hsp70 family. Unlike other HSP70 genes, SSB2 gene expression is reduced after heat shock. It has been reported that Ssb2p can be cross-linked to ribosome-bound nascent polypeptide chains, suggesting a potential role of SSB2 in the endoplasmic reticulum (ER) stress response. In this study, SSB2-deletion and SSB2-overexpression yeast strains were generated and applied to explore the potential mechanism by which SSB2 is involved in the tunicamycin (TM)-induced ER stress response. We demonstrate for the first time that SSB2 deficiency results in reduced resistance to TM, while overexpression of SSB2 increases resistance to TM in an IRE1-HAC1 pathway-dependent manner; these observations are related to changes in intracellular unfolded protein response activities (under the TM-stressed condition). Additionally, SSB2 deletion induces early apoptosis and it may play a causal role in the shortened replicative life span of ssb2Δ mutants observed in this study. These findings highlight the involvement of SSB2 in ER stress responses and ageing in yeast.


ER stress Life span SSB2 Yeast 



Chronological life span


Endoplasmic reticulum


Replicative life span

S. cerevisiae

Saccharomyces cerevisiae




Unfolded protein response



This work was supported by the China National Natural Science Foundation (31101051, 81671399), the Ordinary University Innovation Team Construction Project of Guangdong Province (2015KCXTD022). We are grateful to Brian K. Kennedy (Buck Institute), Matt Kaeberlein and Brian M. Wasko (University of Washington) for technical assistance.

Author's Contribution

X-GL designed the experiments. WZ, H-JC, K-PQ, TZ and X-SH performed experiments. WZ wrote the manuscript. All authors discussed the results and commented on the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10482_2018_1189_MOESM1_ESM.docx (113 kb)
Supplementary material 1 (DOCX 112 kb)


  1. Baudin A, Ozier-Kalogeropoulos O, Denouel A, Lacroute F, Cullin C (1993) A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res 21:3329–3330CrossRefGoogle Scholar
  2. Bitterman KJ, Medvedik O, Sinclair DA (2003) Longevity regulation in Saccharomyces cerevisiae: linking metabolism, genome stability, and heterochromatin. Microbiol Mol Biol Rev 67:376–399CrossRefGoogle Scholar
  3. Bokov AF, Lindsey ML, Khodr C, Sabia MR, Richardson A (2009) Long-lived ames dwarf mice are resistant to chemical stressors. J Gerontol A Biol Sci Med Sci 64:819–827CrossRefGoogle Scholar
  4. Boorstein WR, Ziegelhoffer T, Craig EA (1994) Molecular evolution of the HSP70 multigene family. J Mol Evol 38:1–17CrossRefGoogle Scholar
  5. Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366CrossRefGoogle Scholar
  6. Carmona-Gutierrez D, Eisenberg T, Buttner S, Meisinger C, Kroemer G et al (2010) Apoptosis in yeast: triggers, pathways, subroutines. Cell Death Differ 17:763–773CrossRefGoogle Scholar
  7. Chacinska A, Szczesniak B, Kochneva-Pervukhova NV, Kushnirov VV, Ter-Avanesyan MD et al (2001) Ssb1 chaperone is a [PSI +] prion-curing factor. Curr Genet 39:62–67CrossRefGoogle Scholar
  8. Chakraborty R, Baek JH, Bae EY, Kim WY, Lee SY et al (2016) Comparison and contrast of plant, yeast, and mammalian ER stress and UPR. Appl Biol Chem 59:337–347CrossRefGoogle Scholar
  9. Craig EA, Jacobsen K (1985) Mutations in cognate genes of Saccharomyces cerevisiae hsp70 result in reduced growth rates at low temperatures. Mol Cell Biol 5:3517–3524CrossRefGoogle Scholar
  10. Cui HJ, Liu XG, McCormick M, Wasko BM, Zhao W et al (2015) PMT1 deficiency enhances basal UPR activity and extends replicative lifespan of Saccharomyces cerevisiae. Age 37:46CrossRefGoogle Scholar
  11. Cypser JR, Johnson TE (1999) The spe-10 mutant has longer life and increased stress resistance. Neurobiol Aging 20:503–512CrossRefGoogle Scholar
  12. Delaney JR, Ahmed U, Chou A, Sim S, Carr D et al (2013) Stress profiling of longevity mutants identifies Afg3 as a mitochondrial determinant of cytoplasmic mRNA translation and aging. Aging Cell 12:156–166CrossRefGoogle Scholar
  13. Epel ES, Lithgow GJ (2014) Stress biology and aging mechanisms: toward understanding the deep connection between adaptation to stress and longevity. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S10–S16CrossRefGoogle Scholar
  14. Fabrizio P, Longo VD (2003) The chronological life span of Saccharomyces cerevisiae. Aging Cell 2:73–81CrossRefGoogle Scholar
  15. Garrido C, Bruey J-M, Fromentin A, Hammann A, Arrigo AP et al (1999) Hsp27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J. 13:2061–2070CrossRefGoogle Scholar
  16. Gorman AM, Healy SJ, Jager R, Samali A (2012) Stress management at the ER: regulators of ER stress-induced apoptosis. Pharmacol Ther 134:306–316CrossRefGoogle Scholar
  17. Hamann A, Brust D, Osiewacz HD (2008) Apoptosis pathways in fungal growth, development and ageing. Trends Microbiol 16:276–283CrossRefGoogle Scholar
  18. Kageyama K, Ihara Y, Goto S, Urata Y, Toda G et al (2002) Overexpression of calreticulin modulates protein kinase B/Aktsignaling to promote apoptosis during cardiac differentiation of cardiomyoblast H9c2 cells. J Biol Chem 277:19255–19264CrossRefGoogle Scholar
  19. Kristina D, Nabeel A, Trine R, Harsha GS, Yevhen V et al (2017) Profiling Ssb-Nascent chain interactions reveals principles of Hsp70-assisted folding. Cell 170:298–311CrossRefGoogle Scholar
  20. Laboissiere MC, Sturley SL, Raines RT (1995) The essential function of protein-disulfide isomerase is to unscramble non-native disulfide bonds. J Biol Chem 270:28006–28009CrossRefGoogle Scholar
  21. Labunskyy VM, Gerashchenko MV, Delaney JR, Kaya A, Kennedy BK et al (2014) Lifespan extension conferred by endoplasmic reticulum secretory pathway deficiency requires induction of the unfolded protein response. PLoS Genet 10:e1004019CrossRefGoogle Scholar
  22. Laun P, Buttner S, Rinnerthaler M, Burhans WC, Breitenbach M (2012) Yeast aging and apoptosis. Subcell Biochem 57:207–232CrossRefGoogle Scholar
  23. Lopez N, Halladay J, Walter W, Craig EA (1999) SSB, encoding a ribosome-associated chaperone, is coordinately regulated with ribosomal protein genes. J Bacteriol 181:3136–3143Google Scholar
  24. Madeo F, Herker E, Wissing S, Jungwirth H, Eisenberg T et al (2004) Apoptosis in yeast. Curr Opin Microbiol 7:655–660CrossRefGoogle Scholar
  25. Miller RA (2009) Cell stress and aging: new emphasis on multiplex resistance mechanisms. J Gerontol A Biol Sci Med Sci 64:179–182CrossRefGoogle Scholar
  26. Mori K (2015) The unfolded protein response: the dawn of a new field. Proc Jpn Acad Ser B Phys Biol Sci 91:469–480CrossRefGoogle Scholar
  27. Mortimer RK, Johnston JR (1959) Life span of individual yeast cells. Nature 183:1751–1752CrossRefGoogle Scholar
  28. Nakamura K, Bossy-Wetzel E, Burns K, Fadel MP, Lozyk M et al (2000) Changes in endoplasmic reticulum luminal environment affect cell sensitivity to apoptosis. J Cell Biol 150:731–740CrossRefGoogle Scholar
  29. Nelson RJ, Ziegelhoffer T, Nicolet C, Werner-Washburne M, Craig EA (1992) The translation machinery and 70 kd heat shock protein cooperate in protein synthesis. Cell 71:97–105CrossRefGoogle Scholar
  30. Normington K, Kohno K, Kozutsumi Y, Gething MJ, Sambrook J (1989) Saccharomyces cerevisiae encodes an essential protein homologous in sequence and function to mammalian BiP. Cell 57:1223–1236CrossRefGoogle Scholar
  31. Pfund C, Lopez-Hoyo N, Ziegelhoffer T, Schilke BA, Lopez-Buesa P et al (1998) The molecular chaperone Ssb from Saccharomyces cerevisiae is a component of the ribosome-nascent chain complex. EMBO J 17:3981–3989CrossRefGoogle Scholar
  32. Qin L, Wang Z, Tao L, Wang Y (2010) ER stress negatively regulates AKT/TSC/mTOR pathway to enhance autophagy. Autophagy 6:239–247CrossRefGoogle Scholar
  33. Rinnerthaler M, Jarolim S, Heeren G, Palle E, Perju S et al (2006) MMI1 (YKL056c, TMA19), the yeast orthologue of the translationally controlled tumor protein (TCTP) has apoptotic functions and interacts with both microtubules and mitochondria. Biochim Biophys Acta 1757:631–638CrossRefGoogle Scholar
  34. Rockenfeller P, Madeo F (2008) Apoptotic death of ageing yeast. Exp Gerontol 43:876–881CrossRefGoogle Scholar
  35. Rona G, Herdeiro R, Mathias CJ, Torres FA, Pereira MD et al (2015) CTT1 overexpression increases life span of calorie-restricted Saccharomyces cerevisiae deficient in Sod1. Biogerontology 16:343–351CrossRefGoogle Scholar
  36. Saris N, Holkeri H, Craven RA, Stirling CJ, Makarow M (1997) The Hsp70 homologue Lhs1p is involved in a novel function of the yeast endoplasmic reticulum, refolding and stabilization of heat-denatured protein aggregates. J Cell Biol 137:813–824CrossRefGoogle Scholar
  37. Scheckhuber CQ, Erjavec N, Tinazli A, Hamann A, Nystrom T et al (2007) Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models. Nat Cell Biol 9:99–105CrossRefGoogle Scholar
  38. Steffen KK, Kennedy BK, Kaeberlein M (2009) Measuring replicative life span in the budding yeast. J Vis Exp 28:1209Google Scholar
  39. Szegezdi E, Fitzgerald U, Samali A (2003) Caspase-12 and ER-stress-mediated apoptosis: the story so far. Ann N Y Acad Sci 1010:186–194CrossRefGoogle Scholar
  40. Varghese J, Khandre NS, Sarin A (2003) Caspase-3 activation is an early event and initiates apoptotic damage in a human leukemia cell line. Apoptosis 8:363–370CrossRefGoogle Scholar
  41. Weng Y, Xiang L, Matsuura A, Zhang Y, Huang Q et al (2010) Ganodermasides A and B, two novel anti-aging ergosterols from spores of a medicinal mushroom Ganoderma lucidum on yeast via UTH1 gene. Bioorg Med Chem 18:999–1002CrossRefGoogle Scholar
  42. Werner-Washburne M, Stone DE, Craig EA (1987) Complex interactions among members of an essential subfamily of hsp70 genes in Saccharomyces cerevisiae. Mol Cell Biol 7:2568–2577CrossRefGoogle Scholar
  43. Willmund F, Alamo MD, Pechmann S, Chen T, Albanese V et al (2013) The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis. Cell 152:196–209CrossRefGoogle Scholar
  44. Wu H, Ng BS, Thibault G (2014) Endoplasmic reticulum stress response in yeast and humans. Biosci Rep 34:321–330CrossRefGoogle Scholar
  45. Xu K, Tavernarakis N, Driscoll M (2001) Necrotic cell death in C. elegans requires the function of calreticulin and regulators of Ca2+ release from the endoplasmic reticulum. Neuron 31:957–971CrossRefGoogle Scholar
  46. Xu C, Wang S, Thibault G, Ng DT (2013) Futile protein folding cycles in the ER are terminated by the unfolded protein O-mannosylation pathway. Science 340:978–981CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Aging ResearchGuangdong Medical UniversityDongguanChina
  2. 2.Guangdong Provincial Key Laboratory of Medical Molecular DiagnosticsDongguanChina
  3. 3.Institute of GynecologyWomen and Children’s Hospital of Guangdong ProvinceGuangzhouChina
  4. 4.Institute of Biochemistry and Molecular BiologyGuangdong Medical UniversityDongguanChina

Personalised recommendations