Advertisement

Signalling in actinorhizal root nodule symbioses

  • Valérie Hocher
  • Mariama Ngom
  • Alyssa Carré-Mlouka
  • Pierre Tisseyre
  • Hassen Gherbi
  • Sergio Svistoonoff
Review
  • 14 Downloads

Abstract

Plants able to establish a nitrogen-fixing root nodule symbiosis with the actinobacterium Frankia are called actinorhizal. These interactions lead to the formation of new root organs, called actinorhizal nodules, where the bacteria are hosted intracellularly and fix atmospheric nitrogen thus providing the plant with an almost unlimited source of nitrogen for its nutrition. Like other symbiotic interactions, actinorhizal nodulation involves elaborate signalling between both partners of the symbiosis, leading to specific recognition between the plant and its compatible microbial partner, its accommodation inside plant cells and the development of functional root nodules. Actinorhizal nodulation shares many features with rhizobial nodulation but our knowledge on the molecular mechanisms involved in actinorhizal nodulation remains very scarce. However recent technical achievements for several actinorhizal species are allowing major discoveries in this field. In this review, we provide an outline on signalling molecules involved at different stages of actinorhizal nodule formation and the corresponding signalling pathways and gene networks.

Keywords

Actinobacteria Biological nitrogen fixation Symbiosis Nodulation factors Nodulation Actinorhizal species Microbe-host signalling 

Notes

Acknowledgements

We gratefully acknowledge support from IRD, CNRS (Project EC2CO), Genoscope, Genopole of Montpellier, and Agence Nationale de la Recherche (AN-06-BLAN-0095, BLAN 1708 01, 12-BSV7-0007-02) and United States Department of Agriculture (USDA NIFA 2015-67014-22849) and ECOS-SUD (A07B02 and A13B03).

Author’s contribution

VH, MN, ACM, PT, HG and SS wrote the manuscript. All the authors approved the paper.

Compliance with ethical standards

Conflict of interest

The authors have declared that no competing interest exists.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Abdel-Lateif K, Vaissayre V, Gherbi H et al (2013) Silencing of the chalcone synthase gene in Casuarina glauca highlights the important role of flavonoids during nodulation. New Phytol 199:1012–1021.  https://doi.org/10.1111/nph.12326 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alloisio N, Queiroux C, Fournier P et al (2010) The Frankia alni symbiotic transcriptome. Mol Plant Microbe Interact 23:593–607CrossRefPubMedCentralGoogle Scholar
  3. Auguy F, Abdel-Lateif K, Doumas P et al (2011) Activation of the isoflavonoid pathway in actinorhizal symbioses. Funct Plant Biol 38:690–696CrossRefGoogle Scholar
  4. Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488.  https://doi.org/10.1007/s11103-008-9435-0 CrossRefPubMedGoogle Scholar
  5. Beauchemin NJ, Furnholm T, Lavenus J et al (2012) Casuarina root exudates alter the physiology, surface properties, and plant infectivity of Frankia sp. strain CcI3. Appl Environ Microbiol 78:575–580CrossRefPubMedCentralGoogle Scholar
  6. Berry AM, Kahn RK, Booth MC (1989) Identification of indole compounds secreted by Frankia HFPArI3 in defined culture medium. Plant Soil 118:205–209CrossRefGoogle Scholar
  7. Cérémonie H, Cournoyer B, Maillet F et al (1998) Genetic complementation of rhizobial nod mutants with Frankia DNA: artifact or reality? Mol Gen Genet MGG 260:115–119CrossRefPubMedCentralGoogle Scholar
  8. Cérémonie H, Debellé F, Fernandez MP (1999) Structural and functional comparison of Frankia root hair deforming factor and rhizobia Nod factor. Can J Bot 77:1293–1301Google Scholar
  9. Chabaud M, Gherbi H, Pirolles E et al (2016) Chitinase-resistant hydrophilic symbiotic factors secreted by Frankia activate both Ca2+ spiking and NIN gene expression in the actinorhizal plant Casuarina glauca. New Phytol 209:86–93.  https://doi.org/10.1111/nph.13732209:86-93 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Champion A, Lucas M, Tromas A et al (2015) Inhibition of auxin signaling in Frankia species-infected cells in Casuarina glauca nodules leads to increased nodulation. Plant Physiol 167:1149–1157CrossRefPubMedCentralGoogle Scholar
  11. Cissoko M, Hocher V, Gherbi H et al (2018) Actinorhizal signaling molecules: Frankia root hair deforming factor shares properties with NIN inducing factor. Front Plant Sci.  https://doi.org/10.3389/fpls.2018.01494 CrossRefGoogle Scholar
  12. Clavijo F, Diedhiou I, Vaissayre V et al (2015) The Casuarina NIN gene is transcriptionally activated throughout Frankia root infection as well as in response to bacterial diffusible signals. New Phytol 208:887–903.  https://doi.org/10.1111/nph.13506 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dar TA, Uddin M, Khan MMA et al (2015) Jasmonates counter plant stress: a review. Environ Exp Bot 115:49–57CrossRefGoogle Scholar
  14. Demina IV, Persson T, Santos P et al (2013) Comparison of the nodule vs. root transcriptome of the actinorhizal plant Datisca glomerata: actinorhizal nodules contain a specific class of defensins. PLoS ONE 8:e72442.  https://doi.org/10.1371/journal.pone.0072442 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Doyle JJ (2011) Phylogenetic perspectives on the origins of nodulation. Mol Plant Microbe Interact 24:1289–1295CrossRefPubMedCentralGoogle Scholar
  16. Fournier J, Imanishi L, Chabaud M et al (2018) Cell remodeling and subtilase gene expression in the actinorhizal plant Discaria trinervis highlight host orchestration of intercellular Frankia colonization. New Phytol 219:1018–1030.  https://doi.org/10.1111/nph.15216 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gabbarini L, Wall L (2008) Analysis of nodulation kinetics in FrankiaDiscaria trinervis symbiosis reveals different factors involved in the nodulation process. Physiol Plant 133:776–785CrossRefPubMedCentralGoogle Scholar
  18. Gabbarini L, Wall L (2011) Diffusible factors involved in early interactions of actinorhizal symbiosis are modulated by the host plant but are not enough to break the host range barrier. Funct Plant Biol 38:671–681CrossRefGoogle Scholar
  19. Ghelue MV, Løvaas E, Ringø E, Solheim B (1997) Early interactions between Alnus glutinosa and Frankia strain ArI3. Production and specificity of root hair deformation factor (s). Physiol Plant 99:579–587CrossRefGoogle Scholar
  20. Gherbi H, Markmann K, Svistoonoff S et al (2008) SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria. Proc Natl Acad Sci 105:4928–4932CrossRefPubMedCentralGoogle Scholar
  21. Gherbi H, Hocher V, Ngom M et al (2018) Molecular methods for research on actinorhiza. In: Reinhardt D (ed) Rhizosphere biology research. Springer, BerlinGoogle Scholar
  22. Granqvist E, Sun J, Op den Camp R et al (2015) Bacterial-induced calcium oscillations are common to nitrogen-fixing associations of nodulating legumes and nonlegumes. New Phytol 207:551–558.  https://doi.org/10.1111/nph.13464 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Griesmann M, Chang Y, Liu X et al (2018) Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science 361:eaat1743.  https://doi.org/10.1126/science.aat1743 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hammad Y, Nalin R, Marechal J et al (2003) A possible role for phenyl acetic acid (PAA) on Alnus glutinosa nodulation by Frankia. Plant Soil 254:193–205CrossRefGoogle Scholar
  25. Hocher V, Auguy F, Argout X et al (2006) Expressed sequence-tag analysis in Casuarina glauca actinorhizal nodule and root. New Phytol 169:681–688CrossRefPubMedCentralGoogle Scholar
  26. Hocher V, Alloisio N, Auguy F et al (2011) Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signaling cascade. Plant Physiol 156:700–711CrossRefPubMedCentralGoogle Scholar
  27. Imanishi L, Vayssières A, Franche C et al (2011) Transformed hairy roots of Discaria trinervis: a valuable tool for studying actinorhizal symbiosis in the context of intercellular infection. Mol Plant Microbe Interact 24:1317–1324CrossRefPubMedCentralGoogle Scholar
  28. Imanishi L, Perrine-Walker FM, Ndour A et al (2014) Role of auxin during intercellular infection of Discaria trinervis by Frankia. Front Plant Sci 5:399.  https://doi.org/10.3389/fpls.2014.00399 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Journet EP, El-Gachtouli N, Vernoud V et al (2001) Medicago truncatula ENOD11: a novel RPRP-encoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells. Mol Plant Microbe Interact 14:737–748CrossRefPubMedCentralGoogle Scholar
  30. Kiers ET, Rousseau RA, West SA, Denison RF (2003) Host sanctions and the legume-rhizobium mutualism. Nature 425:78–81.  https://doi.org/10.1038/nature01931 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ktari A, Gueddou A, Nouioui I et al (2017a) Host plant compatibility shapes the proteogenome of Frankia coriariae. Front Microbiol.  https://doi.org/10.3389/fmicb.2017.00720 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ktari A, Nouioui I, Furnholm T et al (2017b) Permanent draft genome sequence of Frankia sp. NRRL B-16219 reveals the presence of canonical nod genes, which are highly homologous to those detected in Candidatus Frankia Dg1 genome. Stand Genomic Sci 12:51.  https://doi.org/10.1186/s40793-017-0261-3 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Laplaze L, Duhoux E, Franche C et al (2000a) Casuarina glauca prenodule cells display the same differentiation as the corresponding nodule cells. Mol Plant Microbe Interact 13:107–112CrossRefPubMedCentralGoogle Scholar
  34. Laplaze L, Ribeiro A, Franche C et al (2000b) Characterization of a Casuarina glauca nodule-specific subtilisin-like protease gene, a homolog of Alnus glutinosa ag12. Mol Plant Microbe Interact 13:113–117CrossRefPubMedCentralGoogle Scholar
  35. Madsen LH, Tirichine L, Jurkiewicz A et al (2010) The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nat Commun 1:10.  https://doi.org/10.1038/ncomms1009 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Markmann K, Giczey G, Parniske M (2008) Functional adaptation of a plant receptor-kinase paved the way for the evolution of intracellular root symbioses with bacteria. PLoS Biol 6:e68CrossRefPubMedCentralGoogle Scholar
  37. Marsh JF, Rakocevic A, Mitra RM et al (2007) Medicago truncatula NIN is essential for rhizobial-independent nodule organogenesis induced by autoactive calcium/calmodulin-dependent protein kinase. Plant Physiol 144:324–335.  https://doi.org/10.1104/pp.106.093021 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Masson-Boivin C, Giraud E, Perret X, Batut J (2009) Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 17:458–466CrossRefPubMedCentralGoogle Scholar
  39. Nguyen TV, Wibberg D, Battenberg K et al (2016) An assemblage of Frankia Cluster II strains from California contains the canonical nod genes and also the sulfotransferase gene nodH. BMC Genom 17:796.  https://doi.org/10.1186/s12864-016-3140-1 CrossRefGoogle Scholar
  40. Normand P, Lapierre P, Tisa LS et al (2007) Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res 17:7–15CrossRefPubMedCentralGoogle Scholar
  41. Oldroyd GED (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263.  https://doi.org/10.1038/nrmicro2990 CrossRefPubMedGoogle Scholar
  42. Oldroyd GE, Engstrom EM, Long SR (2001) Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula. Plant Cell 13:1835–1849CrossRefPubMedCentralGoogle Scholar
  43. Péret B, Swarup R, Jansen L et al (2007) Auxin influx activity is associated with Frankia infection during actinorhizal nodule formation in Casuarina glauca. Plant Physiol 144:1852–1862CrossRefPubMedCentralGoogle Scholar
  44. Péret B, Svistoonoff S, Lahouze B et al (2008) A role for auxin during actinorhizal symbioses formation? Plant Signal Behav 3:34–35CrossRefPubMedCentralGoogle Scholar
  45. Perrine-Walker F, Doumas P, Lucas M et al (2010) Auxin carriers localization drives auxin accumulation in plant cells infected by Frankia in Casuarina glauca actinorhizal nodules. Plant Physiol 154:1372–1380CrossRefPubMedCentralGoogle Scholar
  46. Persson T, Battenberg K, Demina IV et al (2015) Candidatus Frankia Datiscae Dg1, the actinobacterial microsymbiont of Datisca glomerata, expresses the canonical nod genes nodABC in symbiosis with its host plant. PLoS ONE 10:e0127630.  https://doi.org/10.1371/journal.pone.0127630 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Popovici J, Comte G, Bagnarol É et al (2010) Differential effects of rare specific flavonoids on compatible and incompatible strains in the Myrica gale-Frankia actinorhizal symbiosis. Appl Environ Microbiol 76:2451–2460CrossRefPubMedCentralGoogle Scholar
  48. Popovici J, Walker V, Bertrand C et al (2011) Strain specificity in the Myricaceae–Frankia symbiosis is correlated to plant root phenolics. Funct Plant Biol 38:682–689CrossRefGoogle Scholar
  49. Prin Y, Rougier M (1987) Preinfection events in the establishment of AlnusFrankia symbiosis: study of the root hair deformation step. Plant Physiol (Life Sci Adv) 6:96–106Google Scholar
  50. Radutoiu S, Madsen LH, Madsen EB et al (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425:585–592CrossRefPubMedCentralGoogle Scholar
  51. Schauser L, Roussis A, Stiller J, Stougaard J (1999) A plant regulator controlling development of symbiotic root nodules. Nature 402:191–195.  https://doi.org/10.1038/46058 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Solans M, Vobis G, Cassán F et al (2011) Production of phytohormones by root-associated saprophytic actinomycetes isolated from the actinorhizal plant Ochetophila trinervis. World J Microbiol Biotechnol 27:2195–2202.  https://doi.org/10.1007/s11274-011-0685-7 CrossRefGoogle Scholar
  53. Soltis DE, Soltis PS, Morgan DR et al (1995) Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc Natl Acad Sci USA 92:2647–2651CrossRefPubMedCentralGoogle Scholar
  54. Sprent JI (2007) Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytol 174:11–25CrossRefPubMedCentralGoogle Scholar
  55. Streeter J, Wong PP (1988) Inhibition of legume nodule formation and N2 fixation by nitrate. Crit Rev Plant Sci 7:1–23.  https://doi.org/10.1080/07352688809382257 CrossRefGoogle Scholar
  56. Sun J, Cardoza V, Mitchell DM et al (2006) Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation. Plant J Cell Mol Biol 46:961–970.  https://doi.org/10.1111/j.1365-313X.2006.02751.x CrossRefGoogle Scholar
  57. Svistoonoff S, Laplaze L, Auguy F et al (2003) cg12 expression is specifically linked to infection of root hairs and cortical cells during Casuarina glauca and Allocasuarina verticillata actinorhizal nodule development. Mol Plant Microbe Interact 16:600–607CrossRefPubMedCentralGoogle Scholar
  58. Svistoonoff S, Laplaze L, Liang J et al (2004) Infection-related activation of the cg12 promoter is conserved between actinorhizal and legume-rhizobia root nodule symbiosis. Plant Physiol 136:3191–3197CrossRefPubMedCentralGoogle Scholar
  59. Svistoonoff S, Sy MO, Diagne N et al (2010) Infection-specific activation of the Medicago truncatula Enod11 early nodulin gene promoter during actinorhizal root nodulation. Mol Plant Microbe Interact 23:740–747CrossRefPubMedCentralGoogle Scholar
  60. Svistoonoff S, Benabdoun FM, Nambiar-Veetil M et al (2013) The independent acquisition of plant root nitrogen-fixing symbiosis in fabids recruited the same genetic pathway for nodule organogenesis. PLoS ONE 8:e64515.  https://doi.org/10.1371/journal.pone.0064515 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Svistoonoff S, Hocher V, Gherbi H (2014) Actinorhizal root nodule symbioses: what is signalling telling on the origins of nodulation? Curr Opin Plant Biol 20C:11–18.  https://doi.org/10.1016/j.pbi.2014.03.001 CrossRefGoogle Scholar
  62. Tisa LS, Oshone R, Sarkar I et al (2016) Genomic approaches toward understanding the actinorhizal symbiosis: an update on the status of the Frankia genomes. Symbiosis 70:5–16CrossRefGoogle Scholar
  63. Valverde C, Wall LG (2005) Ethylene modulates the susceptibility of the root for nodulation in actinorhizal Discaria trinervis. Physiol Plant 124:121–131CrossRefGoogle Scholar
  64. van Velzen R, Holmer R, Bu F et al (2018) Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses. Proc Natl Acad Sci 115:E4700–E4709.  https://doi.org/10.1073/pnas.1721395115 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Vessey KJ, Pawlowski K, Bergman B (2004) Root-based N2-fixing symbioses: legumes, actinorhizal plants, Parasponia sp. and cycads. Plant Soil 266:205–230CrossRefGoogle Scholar
  66. Wall LG (2000) The actinorhizal symbiosis. J Plant Growth Regul 19:167–182Google Scholar
  67. Wheeler CT, Crozier A, Sandberg G (1984) The biosynthesis of indole-3-acetic acid by Frankia. Plant Soil 78:99–104CrossRefGoogle Scholar
  68. Zdyb A, Demchenko K, Heumann J et al (2011) Jasmonate biosynthesis in legume and actinorhizal nodules. New Phytol 189:568–579CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.LSTM, UMR 040 IRD/INRA/CIRADUniversité Montpellier/SupagroMontpellier CDX 5France
  2. 2.LCM, IRD/ISRA, UCADCentre de Recherche de Bel AirDakarSenegal
  3. 3.LMI LAPSECentre de Recherche de Bel AirDakarSenegal
  4. 4.MCAM, UMR 7245 CNRS/MNHNSorbonne UniversitésParisFrance

Personalised recommendations