Advertisement

Characterization of the pathogenicity of clinical Cronobacter malonaticus strains based on the tissue culture investigations

  • Abdlrhman M. Alsonosi
  • Ondrej Holy
  • Stephen J. Forsythe
Original Paper
  • 18 Downloads

Abstract

Cronobacter malonaticus is a member of the genus Cronobacter which is considered an opportunistic pathogen. The significance of C. malonaticus has recently increased since it was documented to be involved in several serious neonatal infections. However, the virulence factors of C. malonaticus including their ability to adhere, invade and overcome host barriers have not been studied before. Unlike previous Cronobacter research, this study is mainly focused on C. malonaticus and is aimed to investigate its virulence characteristics that enable this species to cause adult and neonatal infections. Altogether, 20 strains were included in this study (19 clinical and one environmental strain). Our data showed that the clinical C. malonaticus has an ability to adhere and invade Caco-2, HBMEC, A549 and T24 cell lines. Moreover, the result showed that certain strains of C. malonaticus (including 1827 and 2018) were able to persist well in macrophages. However, ST7 strains 1827 and 2018 proved to be the most invasive strains among all used strains. The CDC strain 1569 (ST307) which was isolated from the blood of a fatal neonatal case showed also significant results in this study as it was able to invade all used human cells and survive and replicate within microphages. Finally, the findings of this study confirm the potential ability of C. malonaticus to cause serious infections in neonates or adults such as necrotising enterocolitis, meningitis, bacteraemia, pneumonia and urinary tract infection.

Keywords

Cronobacter malonaticus Invasion Adherence Pathogenicity Macrophages 

Notes

Acknowledgements

The authors would like to thank Libyan embassy and Sabha University for the financial support and Nottingham Trent University for the technical support. This work was supported by Research Support Foundation, Vaduz (991100531/39).

Compliance with ethical standards

Conflicts of interest

The authors declared no conflicts of interests.

References

  1. Ahmed G, Elkhatib W, Noreddin A (2014) Inhibition of Pseudomonas aeruginosa PAO1 adhesion to and invasion of A549 lung epithelial cells by natural extracts. J Infect Public Health 7(5):436–444CrossRefGoogle Scholar
  2. Almajed F, Forsythe S (2016) Cronobacter sakazakii clinical isolates overcome host barriers and evade the immune response. Microb Pathog 90:55–63CrossRefGoogle Scholar
  3. Alsonosi A, Hariri S, Kajsík M, Oriešková M, Hanulík V, Röderová M, Petrželová J, Kollárová H, Drahovská H, Forsythe S, Holý O (2015) The speciation and genotyping of Cronobacter isolates from hospitalised patients. Eur J Clin Microbiol Infect Dis 34(10):1979–1988CrossRefGoogle Scholar
  4. Asato V, Vilches V, Pineda M, Casanueva E, Cane A, Moroni M, Brengi S, Pichel M (2013) First clinical isolates of Cronobacter spp. (Enterobacter sakazakii) in Argentina: characterization and subtyping by pulsed-field gel electrophoresis. Rev Argent Microbiol 45(3):160–164PubMedGoogle Scholar
  5. Bhat G, Anandhi R, Dhanya V, Shenoy S (2009) Urinary tract infection due to Enterobacter sakazakii. Indian J Pathol Microbiol 52(3):430–431CrossRefGoogle Scholar
  6. Bowen AB, Braden CR (2006) Invasive Enterobacter sakazakii disease in infants. Emerg Infect Dis 12(8):1185–1189CrossRefGoogle Scholar
  7. Brandão M, Umeda N, Carvalho K, De Filippis I (2015) Investigação de um surto causado por Cronobacter malonaticus em um hospital maternidade em Teresina, Piauí: caracterização e tipificação por eletroforese em gel de campo pulsado. Vigilância Sanitária em DebateGoogle Scholar
  8. Cordeiro M, Werle C, Milanez G, Yano T (2016) Curli fimbria: an Escherichia coli adhesin associated with human cystitis. Braz J Microbiol 47(2):414–416CrossRefGoogle Scholar
  9. Croxall G, Weston V, Joseph S, Manning G, Cheetham P, McNally A (2010) Increased human pathogenic potential of Escherichia coli from polymicrobial urinary tract infections in comparison to isolates from monomicrobial culture samples. J Med Microbiol 60(1):102–109CrossRefGoogle Scholar
  10. Formal S, Hale T, Sansonetti P (1983) Invasive enteric pathogens. Clin Infect Dis 5(4):S702–S707CrossRefGoogle Scholar
  11. Giannouli M, Antunes L, Marchetti V, Triassi M, Visca P, Zarrilli R (2013) Virulence-related traits of epidemic Acinetobacter baumannii strains belonging to the international clonal lineages I-III and to the emerging genotypes ST25 and ST78. BMC Infect Dis 13(1):282–292CrossRefGoogle Scholar
  12. Giri C, Shima K, Tall B, Curtis S, Sathyamoorthy V, Hanisch B, Kim K, Kopecko D (2012) Cronobacter spp. (previously Enterobacter sakazakii) invade and translocate across both cultured human intestinal epithelial cells and human brain microvascular endothelial cells. Microb Pathog 52(2):140–147CrossRefGoogle Scholar
  13. Hariri S, Joseph S, Forsythe S (2013) Cronobacter sakazakii ST4 strains and neonatal meningitis, United States. Emerg Infect Dis 19(1):175–177CrossRefGoogle Scholar
  14. Healy B, Cooney S, O’Brien S, Iversen C, Whyte P, Nally J, Callanan J, Fanning S (2010) Cronobacter (Enterobacter sakazakii): an opportunistic foodborne pathogen. Foodborne Pathog Dis 7(4):339–350CrossRefGoogle Scholar
  15. Hedges AJ, Shannon R, Hobbs RP (1978) Comparison of the precision obtained in counting viable bacteria by the spiral plate maker, the droplette and the Miles & Misra methods. J Appl Bacteriol 45(1):57–65CrossRefGoogle Scholar
  16. Holý O, Petrželová J, Hanulík V, Chromá M, Matoušková I, Forsythe SJ (2014) Epidemiology of Cronobacter spp. isolates from patients admitted to the Olomouc university hospital (Czech Republic). Epidemiol Microbiol Immunol 63(1):69–72Google Scholar
  17. Joseph S, Desai P, Ji Y, Cummings C, Shih R, Degoricija L, Rico A, Brzoska P, Hamby S, Masood N, Hariri S, Sonbol H, Chuzhanova N, McClelland M, Furtado M, Forsythe S (2012) Comparative analysis of genome sequences covering the seven Cronobacter species. PLoS ONE 7(11):e49455–e49467CrossRefGoogle Scholar
  18. Kim K, Kim K, Choi J, Lim J, Lee J, Hwang S, Ryu S (2010) Outer membrane proteins A (OmpA) and X (OmpX) are essential for basolateral invasion of Cronobacter sakazakii. Appl Environ Microbiol 76(15):5188–5198CrossRefGoogle Scholar
  19. Lee H, Hong S, Park H, Kim H, Kim O (2011) Cronobacter sakazakii infection induced fatal clinical sequels including meningitis in neonatal ICR mice. Lab Anim Res 27(1):59–62CrossRefGoogle Scholar
  20. Livrelli V, De Champs C, Di Martino P, Darfeuille-Michaud A, Forestier C, Joly B (1996) Adhesive properties and antibiotic resistance of Klebsiella, Enterobacter, and Serratia clinical isolates involved in nosocomial infections. J Clin Microbiol 34(8):1963–1969PubMedPubMedCentralGoogle Scholar
  21. Mange J, Stephan R, Borel N, Wild P, Kim K, Pospischil A, Lehner A (2006) Adhesive properties of Enterobacter sakazakii to human epithelial and brain microvascular endothelial cells. BMC Microbiol 26(6):58–67CrossRefGoogle Scholar
  22. Martinez JJ (2000) Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J 19(12):2803–2812CrossRefGoogle Scholar
  23. Meier C, Oelschlaeger T, Merkert H, Korhonen T, Hacker J (1996) Ability of Escherichia coli isolates that cause meningitis in newborns to invade epithelial and endothelial cells. Infect Immun 64(7):2391–2399PubMedPubMedCentralGoogle Scholar
  24. Miles AA, Misra SS, Irwin JO (1938) The estimation of the bactericidal power of the blood. J Hyg 38(6):732–749CrossRefGoogle Scholar
  25. Mittal R, Wang Y, Hunter C, Gonzalez-Gomez I, Prasadarao N (2009) Brain damage in newborn rat model of meningitis by Enterobacter sakazakii: a role for outer membrane protein A. Lab Invest 89(3):263–277CrossRefGoogle Scholar
  26. Patrick M, Mahon B, Greene S, Rounds J, Cronquist A, Wymore K, Boothe E, Lathrop S, Palmer A, Bowen A (2014) Incidence of Cronobacter spp. infections, United States, 2003–2009. Emerg Infect Dis 20(9):1536–1539CrossRefGoogle Scholar
  27. Pracht D, Elm C, Gerber J, Bergmann S, Rohde M, Seiler M, Kim K, Jenkinson H, Nau R, Hammerschmidt S (2005) PavA of Streptococcus pneumoniae modulates adherence, invasion, and meningeal inflammation. Infect Immun 73(5):2680–2689CrossRefGoogle Scholar
  28. Remon J, Amin S, Mehendale S, Rao R, Luciano A, Garzon S, Maheshwari A (2015) Depth of bacterial invasion in resected intestinal tissue predicts mortality in surgical necrotizing enterocolitis. J Perinatol 35(9):755–762CrossRefGoogle Scholar
  29. See K, Than H, Tang T (2007) Enterobacter sakazakii bacteraemia with multiple splenic abscesses in a 75-year-old woman: a case report. Age Ageing 36(5):595–596CrossRefGoogle Scholar
  30. Singamsetty V, Wang Y, Shimada H, Prasadarao N (2008) Outer membrane protein A expression in Enterobacter sakazakii is required to induce microtubule condensation in human brain microvascular endothelial cells for invasion. Microb Pathog 45(3):181–191CrossRefGoogle Scholar
  31. Soto G, Hultgren S (1999) Bacterial adhesins: common themes and variations in architecture and assembly. J Bacteriol 181(4):1059–1071PubMedPubMedCentralGoogle Scholar
  32. Stephan R, Lehner A, Tischler P, Rattei T (2010) Complete genome sequence of Cronobacter turicensis LMG 23827, a food-borne pathogen causing deaths in neonates. J Bacteriol 193(1):309–310CrossRefGoogle Scholar
  33. Torres G (2004) Current aspects of Shigella pathogenesis. Rev Latinoam Microbiol 46(3–4):89–97PubMedGoogle Scholar
  34. Townsend S, Hurrell E, Gonzalez-Gomez I, Lowe J, Frye J, Forsythe S, Badger J (2007) Enterobacter sakazakii invades brain capillary endothelial cells, persists in human macrophages influencing cytokine secretion and induces severe brain pathology in the neonatal rat. Microbiology 153(10):3538–3547CrossRefGoogle Scholar
  35. Townsend S, Hurrell E, Forsythe S (2008) Virulence studies of Enterobacter sakazakii isolates associated with a neonatal intensive care unit outbreak. BMC Microbiol 8(1):64–72CrossRefGoogle Scholar
  36. Wilson J (2002) Mechanisms of bacterial pathogenicity. Postgrad Med J 78(918):216–224CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Abdlrhman M. Alsonosi
    • 1
    • 2
  • Ondrej Holy
    • 3
  • Stephen J. Forsythe
    • 4
  1. 1.Pathogen Research Group, School of Science and TechnologyNottingham Trent UniversityNottinghamUK
  2. 2.Microbiology Department, Faculty of Biomedical SciencesSabha UniversitySabhaLibya
  3. 3.Department of Preventive MedicinePalacký University OlomoucOlomoucCzech Republic
  4. 4.foodmicrobe.comNottinghamshireUK

Personalised recommendations