Antonie van Leeuwenhoek

, Volume 112, Issue 2, pp 283–295 | Cite as

Exploitation of new endophytic bacteria and their ability to promote sugarcane growth and nitrogen nutrition

  • Adriana Parada Dias da SilveiraEmail author
  • Raquel de Paula Freitas Iório
  • Fernanda Castro Correia Marcos
  • Ana Olívia Fernandes
  • Silvana Aparecida Creste Dias de Souza
  • Eiko Eurya Kuramae
  • Matheus Aparecido Pereira Cipriano
Original Paper


Few studies have evaluated endophytic bacteria in relation to plant growth promotion, nitrogen uptake and biological control. The aim of this study was to molecularly and physiologically characterize thirteen endophytic bacteria strains, evaluate their biological control properties and their ability to promote plant growth and plant N nutrition. All the strains produced indole acetic acid and promoted increase of plant biomass, N accumulative amount and N-use efficiency index. None of the strains carries the nifH gene. Four strains stimulated plant nitrate reductase activity, four solubilized phosphate, nine produced siderophores and none produced HCN. Seven strains inhibited Bipolaris sacchari growth and one was antagonistic to Ceratocystis paradoxa. The pathogens were inhibited by the production of diffusible and volatile metabolites by the bacterial strains. Moreover, this is the first study to demonstrate the effect of Delftia acidovorans on sugarcane plant growth, nitrogen metabolism improvement and antagonism to B. sacchari. The most efficient strains in promoting plant growth and exhibiting antagonistic activities towards fungal pathogens were Herbaspirillum frinsingense (IAC-BECa-152) and three Pantoea dispersa strains (IAC-BECa-128, IAC-BECa-129, and IAC-BECa-132). These bacteria show potential to be used as inoculants for sustainable agricultural management, mainly at the seedling production phase.


Delftia acidovorans Fungal pathogen antagonism Indole acetic acid Nitrate reductase Plant growth-promoting bacteria Saccharum sp. 



The authors acknowledge FAPESP financial support and CAPES for Master and Post-doctoral fellowships. This research was supported by BIOEN/FAPESP (2008/56147-1), The Netherlands Organization for Scientific Research (NWO-729.004.013), and the CNPq/NWO Program (Project Number 456420/2013-4).

Authors contribution

APDS conceived the study. APDS, RPFI, FCCM, AOF, SCS and MAPC performed the experiments. APDS, RPFI, EEK and MAPC wrote the paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Adesemoye AO, Yuen G, Watts DB (2017) Microbial inoculants for optimized plant nutrient use in integrated pest and input management systems. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer, SingaporeGoogle Scholar
  2. Ahmed I, Ehsan M, Sin Y, Paek J, Khalid N, Hayat R, Chang YH (2014) Sphingobacterium pakistanensis sp. nov., a novel plant growth promoting rhizobacteria isolated from rhizosphere of Vigna mungo. A van Leeuw 105:325–333. CrossRefGoogle Scholar
  3. Alves GC, Videira SS, Urquiaga S, Reis VM (2015) Differential plant growth promotion and nitrogen fixation in two genotypes of maize by several Herbaspirillum inoculants. Plant Soil 387:307–321. CrossRefGoogle Scholar
  4. Bach E, Seger GDS, Fernandes GC et al (2016) Evaluation of biological control and rhizosphere competence of plant growth promoting bacteria. Appl Soil Ecol 99:141–149. CrossRefGoogle Scholar
  5. Bailly A, Groenhagen U, Schulz S, Geisler M, Eberl M, Weisskopf L (2014) The inter-kingdom volatile signal indole promotes rootdevelopment by interfering with auxin signaling. Plant J 80:758–771. CrossRefGoogle Scholar
  6. Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp.: mediated plant growth-stimulation. Soil Biol Biochem 19:451–457CrossRefGoogle Scholar
  7. Barretti PB, Souza RM, Pozza EA (2008) Bactérias endofíticas como agentes promotores do crescimento de plantas de tomateiro e de inibição in vitro de Ralstonia solanacearum. Ciênc Agrotec 32:731–739CrossRefGoogle Scholar
  8. Bonaldi M, Chen X, Kumova A, Pizzatti C, Saracchi M, Cortesi P (2015) Colonization of lettuce rhizosphere and roots by tagged Streptomyces. Front Microbiol. Google Scholar
  9. Bournival BL, Ginoza HS, Schenck S, Moore PH (1994) Characterization of sugarcane response to Bipolaris sacchari: inoculations and host-specific HS-toxin. Phytopathology 84:672–676CrossRefGoogle Scholar
  10. Bremner JM (1965) Total nitrogen. In: Black CA (ed) Methods of soil analysis. American Society of Agronomy, Madison, pp 1149–1178Google Scholar
  11. Cabanás CGL, SchiliròE V-CA, Mercado-Blanco J (2014) The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots. Front Microbiol. Google Scholar
  12. Carvalho AV, Alves BJR, Reis VM (2006) Resposta do dendezeiro à adição de nitrogênio e sua influência na população de bactérias diazotróficas. Pesq Agrop Brasileira 41:293–300CrossRefGoogle Scholar
  13. Cavalcante VS, Döbereiner J (1988) A new acid tolerant nitrogen-fixing bacteria associated with sugarcane. Plant Soil 10:823–831Google Scholar
  14. Cherif-Silini H, Silini A, Yahiaoui H, Ouzari I, Boudabous A (2016) A phylogenetic and plant-growth-promoting characteristics of Bacillus isolated from the wheat rhizosphere. Ann Microbiol 66:1087–1097. CrossRefGoogle Scholar
  15. Cipriano MAP, Freitas SS (2018) Effect of Pseudomonas putida on chrysanthemum growth under greenhouse and field conditions. Afr J Agric Res 13:302–310CrossRefGoogle Scholar
  16. Cipriano MAP, Lupatini M, Lopes-Santos L et al (2016) Lettuce and rhizosphere microbiome responses to growth promoting Pseudomonas species under field conditions. FEMS Microbiol Ecol. Google Scholar
  17. Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959CrossRefGoogle Scholar
  18. Conrath U, Beckers GJ, Flors V, García-Agustín P, Jakab G, Mauch F, Newman MA, Pieterse CM, Poinssot B, Pozo MJ et al (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071CrossRefGoogle Scholar
  19. Dhole A, Shelat H, Vyas R, Jhala Y, Bhange M (2016) Endophytic occupation of legume root nodules by nifH-positive non-rhizobial bacteria, and their efficacy in the groundnut (Arachshypogaea). Ann Microbiol 66:1397CrossRefGoogle Scholar
  20. Dick CM, Hutchinson SA (1966) Biological activity of volatile fungal metabolites. Nature 211:868CrossRefGoogle Scholar
  21. Ding T, Melcher U (2016) Influences of plant species, season and location on leaf endophytic bacterial communities of non-cultivated plants. PLoS ONE 11(3):0150895. CrossRefGoogle Scholar
  22. Döbereiner J, Baldani VLD, Baldani JI (1995) Como isolar e identificar bactérias diazotróficas de plantas não-leguminosas. Embrapa-SPI, Brasília, p p60Google Scholar
  23. Donato VMTS, Andrade AG, Douza ES, França JGE, Maciel GA (2004) Atividade enzimática em variedades de cana-de-açúcar cultivadas in vitro sob diferentes níveis de nitrogênio. PesqAgrop Bras 39:1087–1093Google Scholar
  24. Dong Z, Heydrich M, Bernard K, McCully ME (1995) Further evidence that the N2-fixing endophytic bacterium from theintercellular spaces of sugarcane stems is Acetobacter diazotrophicus. Appl Environ Microbiol 61(5):1843–1846Google Scholar
  25. Duca D, Lorv J, Patten C, Rose D, Glick B (2014) Microbial indole-3-acetic acid and plant growth. Anton Van Leeuwenhoek 106:85–125CrossRefGoogle Scholar
  26. Eljounaidi K, Lee SY, Bae H (2016) Bacterial endophytes as potential biocontrol agents of vascular wilt diseases: review and future prospects. Biol Control 103:62–68. CrossRefGoogle Scholar
  27. Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genom Res 8:175–185CrossRefGoogle Scholar
  28. Fávaro LCL, Sebastianes FLDS, Araújo WL (2012) Epicoccum nigrum P16, a sugarcane endophyte, produces antifungal compounds and induces root growth. PLoS ONE 7(6):e36826. CrossRefGoogle Scholar
  29. Finkel OM, Castrillo G, Paredes SH, Gonzaléz IS, Dangl JL (2018) Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol 38:155–163CrossRefGoogle Scholar
  30. Freitas RP (2011) Bactérias diazotróficas endofíticas associadas à cana-de-açúcar. Dissertation, Instituto Agronômico de CampinasGoogle Scholar
  31. Gibbs JN (1967) A study of the epiphytic growth habit of Fomes annosus. Ann Bot 32:755–774CrossRefGoogle Scholar
  32. Girard JC, Rott P (2000) Pineaple disease. In: Rott P, Bailey RA, Comstock JC, Croft BJ, Saumtally AS (eds) A guide to sugarcane diseases. CIRAD-ISSCT, Montpellier, pp 131–135Google Scholar
  33. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39CrossRefGoogle Scholar
  34. Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genom Res 8:195–202CrossRefGoogle Scholar
  35. Hardoim PR, van Overbeek LS, Berg G, Pirttilä CS, Campisano A, Dörin M, Sessitch A (2015) The gidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320CrossRefGoogle Scholar
  36. Hernández-León R, Rojas-Solís D, Contreras-Pérez M, Orozco-Mosqueda MC, Macías-Rodríguez LI, Cruz HR, Valencia-Cantero E, Santoyo G (2015) Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol Control 81:83–92. CrossRefGoogle Scholar
  37. James Ek, Olivares FL, de Oliveira AL, dos Reis FB Jr., da Silva LG, Reis VM (2001) Further observations on the interaction between sugar cane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. J Exp Bot 52:747–760CrossRefGoogle Scholar
  38. Katznelson H, Bose B (1959) Metabolic activity and phosphate dissolving capability of bacterial isolates from wheat roots, rhizosphere, and non rhizosphere soil. Can J Microb 5:79–85CrossRefGoogle Scholar
  39. Khalaf EM, Raizada MN (2018) Bacterial seed endophytes of domesticated cucurbits antagonize fungal and oomycete pathogens including powdery mildew. Front Microbiol 9:42CrossRefGoogle Scholar
  40. Kielak AM, Cipriano MAP, Kuramae EE (2016) Acidobacteria strains from subdivision 1 act as plant growth-promoting bacteria. Arch Microbiol. Google Scholar
  41. Kirhhof G, Eckert B, Stoffels M, Baldani JI, Veronica MR, Hartmann A (2001) Herbaspirillum frisingense sp. nov., a new nitrogen-fixing bacterial species that occurs in C4-fibre plants. Int J Syst Evol Microbiol 51:157–168CrossRefGoogle Scholar
  42. Kojima K (1996) Changes of absicic acid, indole-3-acetic acid and gibberellin-like substances in flowers and developing fruits of citrus cultivar Hyaganatsu. Sci Hortic 65:901–902CrossRefGoogle Scholar
  43. Kröber M, Wibberg D, Grosch R (2014) Effect of the strain Bacillus amyloliquefaciensFZB42 on the microbial community in the rhizosphere of lettuce under field conditions analyzed by whole metagenome sequencing. Front Microbiol 5:252. Google Scholar
  44. Kruasuwan W, Thamchaipenet A (2016) Diversity of culturable plant growth-promoting bacterial endophytes associated with sugarcane roots and their effect of growth by co-inoculation of diazotrophs and actinomycetes. J Plant Growth Regul. Google Scholar
  45. Kumar M, Grader G, Sessitsch A, Mäki A, van Elsas JD, Nissien R (2017) Plants assemble species specific bacterial communities from common core taxa in three arcto-alpine climate zones. Front Microbiol. Google Scholar
  46. Lowry OH, Rosenbrough NJ, Farr AL, Randal RJ (1951) Protein measurement with the Folin Phenol Reagent. J Biol Chem 193:265–275Google Scholar
  47. Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55:27–34CrossRefGoogle Scholar
  48. Marcos FCC, Iório RPF, Silveira APD, Ribeiro RV, Machado EC, Lagôa AMA (2016) Endophytic bacteria affect sugarcane physiology without changing plant growth. Bragantia 75:1–9. CrossRefGoogle Scholar
  49. Marques JRRBM, Canellas LP, Silva LGO (2008) Promoção de enraizamento de microtoletes de cana-de-açúcar pelo uso conjunto de substâncias húmicas e de bactérias diazotróficas endofíticas. Rev Bras Ciência Solo 32:1121–1128CrossRefGoogle Scholar
  50. Meena VS, Meena SK, Verma JP, Kumar A, Aeron A, Mishra PK, Bisht JK, Pattanayak A, Naveed M, Dotaniya ML (2017) Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: a review. Ecol Eng 107:8–32CrossRefGoogle Scholar
  51. Mehnaz S, Baig DN, Lazarovits G (2010) Genetic and phenotypic diversity of plant growth promoting rhizobacteria isolated from sugarcane plants growing in Pakistan. J Microbiol Biotechnol 20:1614–1623CrossRefGoogle Scholar
  52. Mendes R, Pizzinari-Kleiner AA, Araujo WL, Raaijmakers JM (2007) Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl Environ Microbiol. Google Scholar
  53. Murashige T, Skogg FA (1962) Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:397–473CrossRefGoogle Scholar
  54. Murphy J, Riley JP (1962) A modified single solution method for determination of phosphate in natural waters. Anal Chem Acta 27:31–36CrossRefGoogle Scholar
  55. Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270CrossRefGoogle Scholar
  56. Olanrewaju O, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol. Google Scholar
  57. Oliveira AL, Canuto EL, Urquiaga AL, Reis AL, Baldani JI (2006) Yield of micropropagated sugarcane varieties in different soil types following inoculation with diazotrophic bacteria. Plant Soil 284:23–32CrossRefGoogle Scholar
  58. Pandey PK, Mayanglambam CS, Sungh S, Sing AK, Kumar M, Pathak M, Shakywar BC, Pandey AK (2017) Inside the plants: endophytic bacteria and their functional attributes for plant growth promotion. Int J Curr Microbiol Appl Sci 6:11–21CrossRefGoogle Scholar
  59. Patel DH, Naik JH, Amaresan N (2017) Synergistic effect of root-associated bacteria on plant growth and certain physiological parameters of banana plant (Musa acuminate). Arch Agron Soil Sci. Google Scholar
  60. Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801. CrossRefGoogle Scholar
  61. Pittol M, Durso L, Valiati VH, Fiuza LM (2016) Agronomic and environmental aspects of diazotrophic bacteria in rice fields. Ann Microbiol 66:511–527CrossRefGoogle Scholar
  62. Prasannakumar SP, Gowtham HG, Hariprasad P (2015) Delftia tsuruhatensis WGR-UOM-BT1, a novel rhizobacterium woth PGPR properties from Rauwolfia serpentina (L.) Benth. Ex Kurz supressess fungal phytopathogens by producing a new antibiotic-AMTM. Lett Appl Microbiol 61:460–468CrossRefGoogle Scholar
  63. Quecine MC, Araújo WL, Rossetto PB, Ferreira A, Tsui S, Lacava PT, Mondin M, Azevedo JL, Pizzirani-Kleinera AA (2012) Sugarcane growth promotion by the endophytic bacterium Pantoea agglomerans 33.1. Appl Environ Microbiol 78:7511–7518CrossRefGoogle Scholar
  64. Rafikova GF, Korshunova TY, Minnebaev LF, Chetverikov SP, Loginov ON (2016) A new bacterial strain, Pseudomonas koreensis IB-4, as a promising agent for plant pathogen biological control. Microbiology 85:333–341CrossRefGoogle Scholar
  65. Rampazzo PE, Marcos FCC, Cipriano MAP, Marchiori PER, Freitas SS, Machado EC, Nascimento LC, Brocchi M, Ribeiro RV (2018) Rhizobacteria improve sugarcane growth and photosynthesis under well-watered conditions. Ann Appl Biol 172:309CrossRefGoogle Scholar
  66. Rashid S, Charles TC, Glick BR (2012) Isolation and characterization of new plant growth-promoting bacterial endophytes. Appl Soil Ecol 61:217–224CrossRefGoogle Scholar
  67. Reed AJ, Below FE, Hageman RH (1980) Grain protein accumulation and the relationship between leaf nitrate reductase and proteases activities during grain development in maize. Plant Physiol 66:1179–1183CrossRefGoogle Scholar
  68. Rodrigues EP (2004) Caraterização fisiológica de estirpes de Azospirillum amazonense e a avaliação dos efeitos da inoculação em plantas de arroz inundado. Federal Rural of Rio de Janeiro, Seropédica, Rio de JaneiroGoogle Scholar
  69. Rybakova D, Cernava T, Köberl M, Liebminger S, Etemadi M, Berg G (2016) Endophytes-assisted biocontrol: novel insights in ecology and the mode of action of Paenibacillus. Plant Soil 405:125–140. CrossRefGoogle Scholar
  70. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  71. Schlemper TR, Dimitrov MR, Silva FAO, van Veen JA, Silveira APD, Kuramae EE (2018) Effect of Burkholderia tropica and Herbaspirillum frisingense strains on sorgun growth isplant genotype dependent. Peer J 6:e5346. CrossRefGoogle Scholar
  72. Schwyn B, Neilands JB (1987) Universal assay for the detection and determination of siderophores. Ann Biochem 160:47–56CrossRefGoogle Scholar
  73. Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild type and Nif mutant strains. Mol Plant Microbe Interact 14:358–366CrossRefGoogle Scholar
  74. Shahid I, Rzwan M, Baig DN, Saleem RS, Malik KA, Mehnaz S (2017) Secondary metabolites production and plant growth promotion by Pseudomonas chlororaphis and P. aurantiaca strains isolated from cactus, cotton, and para grass. J Microbiol Biotechnol 27:480–491CrossRefGoogle Scholar
  75. Siddiqi MY, Glass ADM (1981) Utilization index: a modified approach to the estimation and comparison of nutrient efficiency in plants. J Plant Nutr 4:289–302CrossRefGoogle Scholar
  76. Silveira APD, Sala VMR, Cardoso EJBN, Labanca EG, Cipriano MAP (2016) Nitrogen metabolism and growth of wheat plant under diazotrophic endophytic bacteria inoculation. Appl Soil Ecol. Google Scholar
  77. Souza RSC et al (2016) Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci Rep 6:28774. CrossRefGoogle Scholar
  78. Sreenivasan J, Sreenivasan TV (1984) In vitro propagation of Sccharum officinarum L. x Sclerostachya fusca (Roxb) a cane hybrid. Theor Appl Genet 67:171–174CrossRefGoogle Scholar
  79. Ueda T, Suga Y, Yahiro N, Matsuguchi T (1995) Remarkable N2-fixing bacterial diversity detected in Rice roots by molecular evolutionary analysis of nifH gene sequences. J Bacteriol 177:1414–1417CrossRefGoogle Scholar
  80. Upreti R, Thomas P (2015) Root-associated bacterial endophytes from Ralstonia solanacearum resistant and susceptible tomato cultivars and their pathogen antagonistic effects. Front Microbiol 6:255. CrossRefGoogle Scholar
  81. Vacheron J, Desbrosses G, Bouffaud M-L, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth- promoting rhizobacteria and root system functioning. Front Plant Sci. Google Scholar
  82. Verma SK, Kingsley K, Bergen M, English C, Elmore M, Kharwar RN, White JF (2018) Bacterial endophytes from rice cut grass (Leersiaoryzoides L.) increase growth, promot root gravitropic response, stimulate root hair formation, and protect rice seedlings from disease. Plant Soil 422:223–238CrossRefGoogle Scholar
  83. Vurukonda SSKP, Giovanardi D, Stefani E (2018) Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int J Mol Sci 19:952CrossRefGoogle Scholar
  84. Xing YX, Wei CY, Mo Y, Yang LT, Huang SL, Li YR (2016) Nitrogen-fixing and plant growth-promoting ability of two endophytic bacterial strains isolated from sugarcane stalks. Sugar Tech 18:373–379. CrossRefGoogle Scholar
  85. Zhang L, Birch RG (1997) Mechanisms of biocontrol by Pantoea dispersa of sugar cane leaf scald disease caused by Xanthomonas albilineans. J Appl Microbiol 82:448–454. CrossRefGoogle Scholar
  86. Zhang XH, Zhao GH, Li DW, Li SP, Hong Q (2014) Identification and evaluation of strain B37 of Bacillus subtilis antagonistic to Sapstain fungi on poplar wood. Sci World J. Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Adriana Parada Dias da Silveira
    • 1
    Email author
  • Raquel de Paula Freitas Iório
    • 1
  • Fernanda Castro Correia Marcos
    • 1
  • Ana Olívia Fernandes
    • 1
  • Silvana Aparecida Creste Dias de Souza
    • 2
  • Eiko Eurya Kuramae
    • 3
  • Matheus Aparecido Pereira Cipriano
    • 1
  1. 1.Center of Soil and Environmental ResourcesAgronomic Institute/IACCampinasBrazil
  2. 2.Center of SugarcaneAgronomic Institute/IACRibeirão PrêtoBrazil
  3. 3.Department of Microbial EcologyNetherlands Institute of Ecology (NIOO-KNAW)WageningenThe Netherlands

Personalised recommendations