Antonie van Leeuwenhoek

, Volume 112, Issue 2, pp 211–223 | Cite as

Sugar transport systems in Kluyveromyces marxianus CCT 7735

  • Fernando Augusto da Silveira
  • Raphael Hermano S. Diniz
  • Geraldo M. S. Sampaio
  • Rogelio L. Brandão
  • Wendel B. da Silveira
  • Ieso M. CastroEmail author
Original Paper


The pattern of glucose repression in most Kluyveromyces marxianus strains does not correlate with fermentative behaviour; however, glucose repression and fermentative metabolism appear to be linked to the kinetics of sugar uptake. In this work, we show that lactose transport in K. marxianus CCT 7735 by lactose-grown cells is mediated by a low-affinity H+-sugar symporter. This system is glucose repressed and able to transport galactose with low affinity. We also observed the activity of a distinct lactose transporter in response to raffinose. Regarding glucose uptake, specificities of at least three low-affinity systems rely on the carbon source available in a given growth medium. Interestingly, it was observed only one high-affinity system is able to transport both glucose and galactose. We also showed that K. marxianus CCT 7735 regulates the expression of sugar transport systems in response to glucose availability.


Glucose Repression K marxianus Lactose Metabolism regulation Sugar uptake 



This study was supported by the Brazilian Agencies CNPq (National Science and Technology Development Council), CAPES (Coordination for the Improvement of Higher Education Personnel) and FAPEMIG (Foundation for Research Support of the State of Minas Gerais). We also would like to acknowledge Federal University of Ouro Preto, MG, Brazil for financial support (Process N. 23109.003209/2016-98 Edital PROPP 09/2016) and Federal University of Viçosa, MG, Brazil.

Authors contribution

Considering the involvement, explained below, we believe that it is appropriate to include the following authors in the manuscript: Silveira FA, Diniz RHS, Sampaio GSS, Brandao, RL, Silveira WB and Castro IM. IMC and WBS: Conceived of or designed study. FAS, RHSD and GMSS: Performed research. IMC, WBS and RLB: Analyzed data and discussion relative. IMC and WBS: Wrote the paper.

Compilance with ethical standards

This work has not been published previously, it is not under consideration for publication anywhere else, and its publication in Antonie van Leeuwenhoek has been approved by all co-authors, as well as by the responsible authorities at the institutes where the work has been carried out. The authors ensure that accepted principles of ethical and professional conduct has been followed and absence of conflicts of interest.


  1. André B (1995) An overview of membrane transport proteins in Saccharomyces cerevisiae. Yeast 11:1575–1611CrossRefGoogle Scholar
  2. Blank LM, Lehmbeck F, Sauer U (2005) Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. FEMS Yeast Res 5:545–558CrossRefGoogle Scholar
  3. Carvalho-Silva M, Spencer-Martins I (1990) Modes of lactose uptake in the yeast species Kluyveromyces marxianus. Antonie Van Leeuwenhoek 57:77–81CrossRefGoogle Scholar
  4. De Bruijne AW, Schuddemat J, Van den Broek PJA, Van Steveninck J (1988) Regulation of sugar transport systems of Kluyveromyces marxianus: the role of carbohydrates and their catabolism. BBA - Biomembr 939:569–576CrossRefGoogle Scholar
  5. de Lima LA, Diniz RHS, de Queiroz MV, Fietto LG, Silveira WB (2018) Screening of Yeasts Isolated from Brazilian Environments for the 2-Phenylethanol (2-PE) Production. Biotechnol Bioprocess Eng 23:326–332CrossRefGoogle Scholar
  6. de Souza CJA, Costa DA, Rodrigues MQRB, dos Santos AF, Lopes MR, Abrantes ABP, dos Santos Costa P, Silveira WB, Passos FML, Fietto LG (2012) The influence of presaccharification, fermentation temperature and yeast strain on ethanol production from sugarcane bagasse. Bioresour Technol 109:63–69CrossRefGoogle Scholar
  7. Diniz RHS, Silveira WB, Fietto LG, Passos FML (2012) The high fermentative metabolism of Kluyveromyces marxianus UFV-3 relies on the increased expression of key lactose metabolic enzymes. Antonie Van Leeuwenhoek 101:541–550CrossRefGoogle Scholar
  8. Diniz RHS, Rodrigues MQRB, Fietto LG, Passos FML, Silveira WB (2014) Optimizing and validating the production of ethanol from cheese whey permeate by Kluyveromyces marxianus UFV-3. Biocatal Agric Biotechnol 3:111–117CrossRefGoogle Scholar
  9. Ferreira PG, da Silveira FA, dos Santos RCV, Genier HLA, Diniz RHS, Ribeiro JI, Fietto LG, Passos FML, da Silveira WB (2015) Optimizing ethanol production by thermotolerant Kluyveromyces marxianus CCT 7735 in a mixture of sugarcane bagasse and ricotta whey. Food Sci Biotechnol 24:1421–1427CrossRefGoogle Scholar
  10. Fiechter A, Fuhrmann GF, Kappeli E (1981) Regulation of glucose metabolism in growing yeast cells. Adv Microbiol Pysiol 22:123–183CrossRefGoogle Scholar
  11. Flores CL, Rodríguez C, Petit T, Gancedo C (2000) Carbohydrate and energy-yielding metabolism in non-conventional yeasts. FEMS Microbiol Rev 24:507–529Google Scholar
  12. Fonseca GG, Heinzle E, Wittmann C, Gombert AK (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79:339–354CrossRefGoogle Scholar
  13. Fonseca GG, Carvalho NMB, Gombert AK (2013) Growth of the yeast Kluyveromyces marxianus CBS 6556 on different sugar combinations as sole carbon and energy source. Appl Microbiol Biotechnol 97:5055–5067CrossRefGoogle Scholar
  14. Gabardo S, Pereira GF, Rech R, Ayub MAZ (2015) The modeling of ethanol production by Kluyveromyces marxianus using whey as substrate in continuous A-stat bioreactors. J Ind Microbiol Biotechnol 42:1243–1253CrossRefGoogle Scholar
  15. Gancedo JM (2008) The early steps of glucose signalling in yeast. FEMS Microbiol Rev 32:673–704CrossRefGoogle Scholar
  16. Gasnier B (1987) Characterization of low- and high-affinity glucose transports in the yeast Kluyveromyces marxianus. BBA - Biomembr 903:425–433CrossRefGoogle Scholar
  17. González-Siso MI (1996) The biotechnological utilization of cheese whey: a review. Bioresour Technol 57:1–11CrossRefGoogle Scholar
  18. González-Siso MI, Freire-Picos MA, Ramil E, González-Domínguez M, Rodríguez Torres A, Cerdán ME (2000) Respirofermentative metabolism in Kluyveromyces lactis: insights and perspective. Enzyme Microbiol Technol 26:699–705CrossRefGoogle Scholar
  19. Guimarães PMR, Teixeira JA, Domingues L (2010) Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnol Adv 28:375–384CrossRefGoogle Scholar
  20. Henderson CM, Block DE (2014) Examining the role of membrane lipid composition in determining the ethanol tolerance of Saccharomyces cerevisiae. Appl Environ Microbiol 80:2966–2972CrossRefGoogle Scholar
  21. Höfer M, Misra PC (1978) Evidence for a proton/sugar symport in the yeast Rhodotorula gracilis (glutinis). Biochem J 172:15–22CrossRefGoogle Scholar
  22. Lages F, Silva-Graça M, Lucas C (1999) Active glycerol uptake is a mechanism underlying halotolerance in yeasts: a study of 42 species. Microbiol 145:2577–2585CrossRefGoogle Scholar
  23. Lane MM, Morrissey JP (2010) Kluyveromyces marxianus: a yeast emerging from its sister’ s shadow. Fungal Biol Rev 24:17–26CrossRefGoogle Scholar
  24. Lane MM, Burke N, Karreman R, Wolfe KH, O’Byrne CP, Morrissey JP (2011) Physiological and metabolic diversity in the yeast Kluyveromyces marxianus. Antonie Van Leeuwenhoek 100:507–519CrossRefGoogle Scholar
  25. Loaces I, Rodríguez C, Amarelle V, Fabiano E, Noya F (2016) Improved glycerol to ethanol conversion by E. coli using a metagenomic fragment isolated from an anaerobic reactor. J Ind Microbiol Biotechnol 43:1405–1416CrossRefGoogle Scholar
  26. Loureiro-Dias MC, Peinado JM (1982) Effect of ethanol and other alkanols on the maltose transport system of Saccharomyces cerevisiae. Biotechnol Lett 4:721–724CrossRefGoogle Scholar
  27. Loureiro-Dias MC, Peinado JM (1984) Transport of maltose in Saccahromyces cerevisiae. Effect of pH and potassium ions. Biochem J 222:293–298CrossRefGoogle Scholar
  28. Merico A, Sulo P, Piškur J, Compagno C (2007) Fermentative lifestyle in yeasts belonging to the Saccharomyces complex. FEBS J 274:976–989CrossRefGoogle Scholar
  29. Merico A, Galafassi S, Piškur J, Compagno C (2009) The oxygen level determines the fermentation pattern in Kluyveromyces lactis. FEMS Yeast Res 9:749–756CrossRefGoogle Scholar
  30. O’Shea DG, Walsh PK (1996) Morphological characterization of the dimorphic yeast Kluyveromyces marxianus var. marxianus NRRLy2415 by semi-automated image analysis. Biotechnol Bioeng 51:679–690CrossRefGoogle Scholar
  31. Otterstedt K, Larseon C, Bill RM, Stahlberg A, Boles E, Hohmann S, Gustafsson L (2004) Switching the mode of metabolism in the yeast Saccharomyces cerevisiae. EMBO Rep 5:532–537CrossRefGoogle Scholar
  32. Ozcan S, Johnston M (1995) Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol Cell Biol 15:1564–1572CrossRefGoogle Scholar
  33. Postma E, Van Den Brooek PJA (1990) Continuous-culture study of the regulation of glucose and fructose transport in Kluyveromyces marxianis CBS 6556. L. Bacteriol 172:2871–2876CrossRefGoogle Scholar
  34. Prazeres AR, Carvalho F, Rivas J (2012) Cheese whey management: a review. J Environ Manag 110:48–68CrossRefGoogle Scholar
  35. Rocha SN, Abrahao-Neto J, Cerdan ME, Gonzalez-Siso MI, Gombert AK (2010) Heterologous expression of glucose oxidase in the yeast Kluyveromyces marxianus. Microb Cell Fact 9:4. CrossRefGoogle Scholar
  36. Rubio-Texeira M (2006) Endless versatility in the biotechnological applications of Kluyveromyces LAC genes. Biotechnol Adv 24:212–225CrossRefGoogle Scholar
  37. Schaffrath R, Breunig KD (2000) Genetics and molecular physiology of the yeast Kluyveromyces lactis. Fungal Genet Biol 30:173–190CrossRefGoogle Scholar
  38. Silveira WB, Passos FJV, Mantovani HC, Passos FML (2005) Ethanol production from cheese whey permeate by Kluyveromyces marxianus UFV-3: a flux analysis of oxido-reductive metabolism as a function of lactose concentration and oxygen levels. Enzyme Microb Technol 36:930–936CrossRefGoogle Scholar
  39. Silveira WB, Diniz RHS, Cerdan ME, Gonzalez-Siso MI, Souza RA, Vidigal PMP, Brustolini OJB, de Almeida Prata ERB, Medeiros AC, Paiva LC, Nascimento M, Ferreira EG, dos Santos VC, Braganca CRS, Fernandes TAR, Colombo LT, Passos FML (2014) Genomic sequence of the yeast Kluyveromyces marxianus CCT 7735 (UFV-3), a highly lactose-fermenting yeast isolated from the Brazilian dairy industry. Genome Announc 2:e01136–14CrossRefGoogle Scholar
  40. Suomalainen H, Nurminen T, Oura E (1973) Aspects of cytology and metabolism of yeast. Prog Ind Microbiol 12:109–167Google Scholar
  41. Varela JA, Montini N, Scully D, Van der Ploeg R, Oreb M, Boles E, Hirota J, Akada R, Hoshida H, Morrissey JP (2017) Polymorphisms in the LAC12 gene explain lactose utilisation variability in Kluyveromyces marxianus strains. FEMS Yeast Res 17:1–13CrossRefGoogle Scholar
  42. Yadav JS, Yan S, Pilli S, Kumar L, Tyagi RD, Surampalli RY (2015) Cheese whey: a potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. Biotechnol Adv 33:756–774CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Departamento de Microbiologia Agrícola, BIOAGROUniversidade Federal de ViçosaViçosaBrazil
  2. 2.Laboratório de Biologia Celular e Molecular, Núcleo de Pesquisas em Ciências Biológicas, Escola de FarmáciaUniversidade Federal de Ouro PretoOuro PretoBrazil
  3. 3.Instituto Federal de Educação, Ciência e Tecnologia de Minas Gerais - Campus Ouro Preto, CODACIBOuro PretoBrazil

Personalised recommendations