Advertisement

Regulator ThnR and the ThnDE ABC transporter proteins confer autoimmunity to thurincin H in Bacillus thuringiensis

  • Luz E. Casados-Vázquez
  • Dennis K. Bideshi
  • José E. Barboza-Corona
ORIGINAL PAPER
  • 17 Downloads

Abstract

The structural gene that encodes thurincin H, a bacteriocin produced by Bacillus thuringiensis, is harboured in a genetic cluster (thnP, E, D, R, A1, A2, A3, B, T, I) that controls its synthesis, modification, secretion and autoimmunity. The specific genes in the cassette that confer immunity in B. thuringiensis to thurincin H are unknown. To identify these immunity determinants, we generated constructs that were used to transform a natural thurincin H-sensitive B. thuringiensis strain (i.e. Btk 404), and resistance or susceptibility to the bacteriocin in resultant recombinants was evaluated. When Btk 404/pHT3101-ThnARDEP and Btk 404/pHT3101-ThnABTI were exposed to thurincin H, immunity was demonstrated by the former only, indicating that ThnI does not play a role in resistance to the bacteriocin as previously proposed. Furthermore, we generated different sub-cassettes under the control of divergent promoters pThnR and pThur of the thurincin H locus, and pChi, and using the green fluorescent protein gene as reporter, which demonstrated that all promoters were recognised by ThnR, except pChi. We show for the first time that the small operon composed of thnR, thnD and thnE is required for immunity of B. thuringiensis to thurincin H, and thnI is not necessary for this response.

Keywords

Bacillus thuringiensis Immunity Thurincin H Antimicrobial activity 

Notes

Acknowledgements

Luz E. Casados-Vázquez is a Young Associate Research supported by “Consejo Nacional de Ciencia y Tecnología (CONACYT), México (Grant 269). This study was partially supported by Grant SEP-CONACyT (258220) to J.E. Barboza-Corona. We appreciate the technical assistance of Dr. Rubén Salcedo-Hernández from the Universidad de Guanajuato, México.

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

10482_2018_1124_MOESM1_ESM.docx (458 kb)
Supplementary material 1 (DOCX 459 kb)

References

  1. AlKhatib Z, Lagedroste M, Zaschke J, Wagner M, Abts A, Fey I, Kleinschrodt D, Smits SH (2014) The C-terminus of nisin is important for the ABC transporter NisFEG to confer immunity in Lactococcus lactis. Microbiologyopen 3:752–763CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arantes O, Lereclus D (1991) Construction of cloning vectors for Bacillus thuringiensis. Gene 108:115–119CrossRefPubMedGoogle Scholar
  3. Babasaki K, Takao T, Shimonishi Y, Kurahashi K (1985) Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: isolation, structural analysis, and biogenesis. J Biochem 98:585–603CrossRefPubMedGoogle Scholar
  4. Barboza-Corona JE, Vázquez-Acosta H, Bideshi DK, Salcedo-Hernández R (2007) Bacteriocin-like inhibitor substances produced by Mexican strains of Bacillus thuringiensis. Arch Microbiol 187:117–126CrossRefPubMedGoogle Scholar
  5. Barboza-Corona JE, Delgadillo-Ángeles JL, Castañeda-Ramírez JC, Barboza-Pérez UE, Casados-Vázquez LE, Bideshi DK, del Rincón-Castro MC (2014) Bacillus thuringiensis subsp. kurstaki HD1 as a factory to synthesize alkali-labile ChiA74∆sp chitinase inclusions, Cry crystals and spores for applied use. Microb Cell Fact 13:15.  https://doi.org/10.1186/1475-2859-13-15 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Casados-Vázquez LE, Bideshi DK, Barboza-Corona JE (2017) The thnR gene is a negative transcription regulator of the thurincin H genetic cassette in Bacillus thuringiensis subsp. morrisoni. Arch Microbiol 199:385–390CrossRefPubMedGoogle Scholar
  7. Christ NA, Bochmann S, Gottstein D, Duchardt-Ferner E, Hellmich UA, D¨sterhus S, Kötter P, Güntert P, Entian K-D, Wöhnert J (2012) The first structure of a lantibiotic immunity protein, SpaI from Bacillus subtilis, reveals a novel fold. J Biol Chem 287:35286–35298CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cordeiro JX, Laia ML, Goncalves JF, Bergamasco VB, Lemos MVF (2011) Bacillus thuringiensis mutant increase activity against Spodoptera frugiperda larvae. Aust J Basic Appl Sci 5:521–531Google Scholar
  9. De la Fuente-Salcido N, Alanís-Guzmán MG, Bideshi DK, Salcedo-Hernández R, Bautista-Justo M, Barboza-Corona JE (2008) Enhanced synthesis and antimicrobial activities of bacteriocins produced by Mexican strains of Bacillus thuringiensis. Arch Microbiol 190:633–640CrossRefPubMedGoogle Scholar
  10. De la Fuente-Salcido NM, Casados-Vázquez LE, Barboza-Corona JE (2013) Bacteriocins of Bacillus thuringiensis can expand the potential of this bacterium to other areas rather than limit its use only as microbial insecticide. Can J Microbiol 59:515–522CrossRefPubMedGoogle Scholar
  11. Del Sal G, Manfioletti G, Schneider C (1988) A one-tube plasmid DNA mini-preparation suitable for sequencing. Nucleic Acids Res 16:9878CrossRefPubMedPubMedCentralGoogle Scholar
  12. Diederichs K, Diez J, Greller G, Müller C, Breed J, Schnell C, Vonrhein C, Boos W, Welte W (2000) Crystal structure of MalK, the ATPase subunit of the trehalose/maltose ABC transporter of the archaeon Thermococcus litoralis. EMBO J 19:5951–5961CrossRefPubMedPubMedCentralGoogle Scholar
  13. Draper LA, Grainger K, Deegan LH, Cotter PD, Hill C, Ross RP (2009) Cross-immunity and immune mimicry as mechanism of resistance to the lantibiotic lacticin 3147. Mol Microbiol 71:1043–1054CrossRefPubMedGoogle Scholar
  14. Duarte AFS, Ceotto-Vigoder H, Barrias ES, Souto-Padrón TCBS, Nes IF, Bastos MDCF (2018) Hyicin 4244, the first sactibiotic described in staphylococci, exhibits an anti-staphylococcal biofilm activity. Int J Antimicrob Agents.  https://doi.org/10.1016/j.ijantimicag.2017.06.025 Google Scholar
  15. Engelke G, Gutowski-Eckel Z, Kiesau P, Siegers K, Hammelmann M, Entian K-D (1994) regulation of nisin biosynthesis and immunity in Lactococcus lactis. Appl Environ Microbiol 60:814–825PubMedPubMedCentralGoogle Scholar
  16. Estruch JJ, Warren GW, Mullins MA, Nye GJ, Craig JA, Koziel MG (1996) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Nat Acad Sci USA 93:5389–5394CrossRefPubMedGoogle Scholar
  17. Fagundes PC, Ceotto H, Potter A, de Paiva Vasconcelon, Brito MA, Bredem D, Nes IF, Bastos Mdo C (2017) Hyicin 3682, a bioactive peptide produced by Staphylococcus hyicus 3682 with potential applications for food preservation. Res Microbiol 162:1052–1059CrossRefGoogle Scholar
  18. Gaudet R, Wiley DC (2001) Structure of the ABC ATPase domain of human TAP1, the transporter associated with antigen processing. EMBO J 20:4964–4972CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gebhard S (2012) ABC transporters of antimicrobial peptides in Firmicutes bacteria–phylogeny, function and regulation. Mol Microbiol 86:1295–1317CrossRefPubMedGoogle Scholar
  20. Görke B (2012) Killing two birds with one stone: an ABC transporter regulates gene expression through sequestration of a transcriptional regulator at the membrane. Mol Microbiol 85:597–601CrossRefPubMedGoogle Scholar
  21. Hacker C, Christ NA, Duchardt-Ferner E, Korn S, Göbl C, Bernirger L, Düsterhus S, Hellmich UA, Madl T, Kötter P, Entian K-D, Wöhnert J (2015) The solution structure of the lantibiotic immunity protein NisI and its interaction with nisin. J Biol Chem 290:28869–28886CrossRefPubMedPubMedCentralGoogle Scholar
  22. Halami PM, Stein T, Chandrashekar A, Entian K-D (2010) Maturation and processing of SpaI, the lipoprotein involved in subtilin immunity in Bacillus subtilis ATCC 6633. Microbiol Res 165:183–189CrossRefPubMedGoogle Scholar
  23. Hillerich B, Westpheling J (2006) A new GntR family transcriptional regulator in Streptomyces coelicolor is required for morphogenesis and antibiotic production and controls transcription of an ABC transporter in response to carbon source. J Bacterio. 188:7477–7487CrossRefGoogle Scholar
  24. Jouzani GS, Valijanian E, Sharafi R (2017) Bacillus thuringiensis: a successful insecticide with new environmental features and tidings. Appl Microbiol Biotechnol 101:2691–2711CrossRefPubMedGoogle Scholar
  25. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845CrossRefPubMedPubMedCentralGoogle Scholar
  26. Krogh A, Larsson B, Von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580CrossRefPubMedGoogle Scholar
  27. Lee H, Churey JJ, Worobo RW (2009) Biosynthesis and transcriptional analysis of thurincin H, a tandem repeated bacteriocin genetic locus, produced by Bacillus thuringiensis SF361. FEMS Microbiol Lett 299:205–213CrossRefPubMedGoogle Scholar
  28. Lubelski J, Mazurkiewicz P, van Merkerk R, Konings WN, Driessen AJM (2004) ydaG and ydbA of Lactococcus lactis encode a heterodimeric ATP-binding cassette-type multidrug transporter. J Biol Chem 279:34449–34455CrossRefPubMedGoogle Scholar
  29. Majchrzykiewicz JA, Kuipers OP, Bijlsma JJ (2010) Generic and specific adaptive responses of Streptococcus pneumoniae to challenge with three distinct antimicrobial peptides, bacitracin, LL-37, and nisin. Antimicrob Agents Chemother 54:440–451CrossRefPubMedGoogle Scholar
  30. Martin NI, Sprules T, Carpenter MR, Cotter PD, Hill C, Ross RP, Vederas JC (2004) Structural characterization of lacticin 3147, a two-peptide lantibiotic with synergistic activity. Biochem 43:3049–3056CrossRefGoogle Scholar
  31. Mathur H, O’Connor PM, Cotter PD, Hill C, Ross RP (2014) Heterologous expression of thuricin CD immunity genes in Listeria monocytogenes. Antimicrob Agents Chemother 58:3421–3428CrossRefPubMedPubMedCentralGoogle Scholar
  32. Matsuo M, Dabrowski M, Ueda K, Ashcroft FM (2002) Mutations in the linker domain of NBD2 of SUR inhibit transduction but not nucleotide binding. EMBO J 21:4250–4258CrossRefPubMedPubMedCentralGoogle Scholar
  33. Novichkov PS, Kazakov AE, Ravcheev DA, Leyn SA, Kovaleva GY, Sutormin RA, Rodionov DA (2010) Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc Nat Acad Sci USA 107:9352–9357CrossRefGoogle Scholar
  34. Rea MC, Sit CS, Clayton E, O’Connor PM, Whittal RM, Zheng J, Veredas JC, Ross P, Hill C (2010) Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc Nat Acad Sci USA 107:9352–9357CrossRefPubMedGoogle Scholar
  35. Rigali S, Derouaux A, Giannotta F, Dusart J (2002) Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. J Biol Chem 277:12507–12515CrossRefPubMedGoogle Scholar
  36. Rost B, Yachdav G, Liu J (2004) The predictprotein server. Nucleic Acids Res 32((suppl_2)):W321–W326CrossRefPubMedPubMedCentralGoogle Scholar
  37. Salazar-Marroquín EL, Galán-Wong LJ, Moreno-Medina VR, Reyes-López MÁ, Pereyra-Alférez B (2016) Bacteriocins synthesized by Bacillus thuringiensis: generalities and potential applications. Rev Med Microbiol 27:95–101CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. CSHL Press, New YorkGoogle Scholar
  39. Saraste M, Sibbald PR, Wittinghofer A (1990) 9 The P-loop—a common motif in ATP-and GTP-binding proteins. Trends Biochem Sci 15:430–434CrossRefPubMedGoogle Scholar
  40. Schägger H (2006) Tricine-sds-page. Nat Protoc 1:16CrossRefPubMedGoogle Scholar
  41. Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806PubMedPubMedCentralGoogle Scholar
  42. Siegers K, Entian K-D (1995) Genes involved in immunity to the lantibiotic nisin produced by Lactococcus lactis 6F3. Appl Environ Microbiol 61:1082–1089PubMedPubMedCentralGoogle Scholar
  43. Stein T, Borchert S, Conrad B, Feesche J, Hofemeister B, Hofemeister J, Entian K-D (2002) Two different lantibiotic-like peptides originate from the ericin gene cluster of Bacillus subtilis A1/3. J Bacteriol 184:1703–1711CrossRefPubMedPubMedCentralGoogle Scholar
  44. Stein T, Heinzmann S, Solovieva I, Entian KD (2003) Function of Lactococcus lactis nisin immunity genes nisI and nisFEG after coordinated expression in the surrogate host Bacillus subtilis. J Biol Chem 278:89–94CrossRefPubMedGoogle Scholar
  45. Stein T, Düsterhus S, Stroh A, Entian K-D (2004) Subtilosin production by two Bacillus subtilis subspecies and variance of the sbo-alb cluster. Appl Environ Microbiol 70:2349–2353CrossRefPubMedPubMedCentralGoogle Scholar
  46. Stein T, Heinzmann S, Düsterhus S, Borchert S, Entian KD (2005) Expression and functional analysis of the subtilin immunity genes spaIFEG in the subtilin-sensitive host Bacillus subtilis MO1099. J Bacteriol 187:822–828CrossRefPubMedPubMedCentralGoogle Scholar
  47. Tusnady GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinfomatics 17:849–850CrossRefGoogle Scholar
  48. Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha-and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951PubMedPubMedCentralGoogle Scholar
  49. Wang G, Manns DC, Churey JJ, Worobo RW (2014) Naturally sensitive Bacillus thuringiensis EG10368 produces thurincin H and acquires immunity after heterologous expression of the one-step-amplified thurincin H gene cluster. J Dairy Sci 97:4115–4119CrossRefPubMedGoogle Scholar
  50. Wieckowski BM, Hegemann JD, Mielcarek A, Boss L, Burghaus O, Marahiel MA (2015) The PqqD homologous domain of the radical SAM enzyme ThnB is required for thioether bond formation during thurincin H maturation. FEBS Lett 589:1802–1806CrossRefPubMedGoogle Scholar
  51. Xin B, Zheng J, Liu H, Junhua L, Ruan L, Peng D, Sajid M, Sun M (2016) Thusin, a novel two-component lantibiotic with potent antimicrobial activity against several gram-positive pathogens. Front Microbiol 7:1–12CrossRefGoogle Scholar
  52. Yin X, Yang J, Xiao F, Yang Y, Shen HB (2018) MemBrain: an easy-to-use online webserver for transmembrane protein structure prediction. Nano Micro Lett 10:2.  https://doi.org/10.1007/s40820-017-0156-2 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Life Science Division, Graduate Program in BiosciencesUniversity of Guanajuato Campus Irapuato-SalamancaIrapuatoMexico
  2. 2.Life Science Division Food DepartmentUniversity of Guanajuato Campus Irapuato-SalamancaIrapuatoMexico
  3. 3.Department of Biological SciencesCalifornia Baptist UniversityRiversideUSA
  4. 4.Department of EntomologyUniversity of CaliforniaRiversideUSA

Personalised recommendations