Antonie van Leeuwenhoek

, Volume 111, Issue 11, pp 2175–2183 | Cite as

A new Rhizobium species isolated from the water of a crater lake, description of Rhizobium aquaticum sp. nov.

  • István Máthé
  • Erika Tóth
  • Anikó Mentes
  • Attila Szabó
  • Károly Márialigeti
  • Peter Schumann
  • Tamás FelföldiEmail author
Original Paper


A novel isolate, strain SA-276T, was isolated from the water of Lake St. Ana, a crater lake which is located in Romania. Phylogenetic analysis based on the 16S rRNA gene revealed that the new strain is a member of the family Rhizobiaceae, showing a high pairwise similarity value (97.65%) to Rhizobium tubonense CCBAU 85046T (= DSM 25379T), Rhizobium leguminosarum USDA 2370T (= LMG 14904T), Rhizobium anhuiense CCBAU 23252T and Rhizobium laguerreae FB206T. Cells of strain SA-276T were rod-shaped, motile, oxidase negative and weakly catalase positive. The predominant fatty acids were C18:1ω7c and cyclo C19:0ω8c, the major respiratory quinones were Q-10 and Q-9, and the main polar lipids were phosphatidylmonomethylethanolamine, phosphatidylglycerol and phosphatidylcholine. The G + C content of the genomic DNA of strain SA-276T was 60.8 mol%. The novel isolate can be distinguished from the closest related type strain R. tubonense DSM 25379T based on its broader substrate specificity and positive trypsin enzyme activity. On the basis of the phenotypic, chemotaxonomic and molecular data, strain SA-276T is considered to represent a new species, for which the name Rhizobium aquaticum sp. nov. is proposed. The type strain is SA-276T (= DSM 29780T = JCM 31760T).


Rhizobium Crater lake Alphaproteobacteria Rhizobiacaeae 










The authors are thankful to Mihály Koncz, Judit Kosztik, Zsuzsa Kéki, Sára Szuróczki and Anikó Lajosné Balogh for their technical assistance. The authors wish to thank to Tisza Bell for correction of English grammar. T. F. was supported by the New National Excellence Program of the Ministry of Human Capacities, Hungary (Grant Number: ÚNKP-17-4-III-ELTE-111).

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

The article does not contain any studies with humans or animals.

Supplementary material

10482_2018_1110_MOESM1_ESM.pdf (681 kb)
Supplementary material 1 (PDF 681 kb)


  1. Althabegoiti MJ, Ormeño-Orrillo E, Lozano L, Torres Tejerizo G, Rogel MA, Mora J, Martínez-Romero E (2014) Characterization of Rhizobium grahamii extrachromosomal replicons and their transfer among rhizobia. BMC Microbiol 14:6CrossRefGoogle Scholar
  2. An DS, Im WT, Yang HC, Lee ST (2006) Shinella granuli gen. nov., sp. nov., and proposal of the reclassification of Zoogloea ramigera ATCC 19623 as Shinella zoogloeoides sp. nov. Int J Syst Evol Microbiol 56:443–448CrossRefGoogle Scholar
  3. Barrow GI, Feltham RKA (2003) Cowan and Steel’s manual for the identification of medical bacteria, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  4. Behrendt U, Kämpfer P, Glaeser SP, Augustin J, Ulrich A (2016) Characterization of the N2O-producing soil bacterium Rhizobium azooxidifex sp. nov. Int J Syst Evol Microbiol 66:2354–2361CrossRefGoogle Scholar
  5. Bürgmann H, Widmer F, Von Sigler W, Zeyer J (2004) New molecular screening tools for analysis of free-living diazotrophs in soil. Appl Environ Microbiol 70:240–247CrossRefGoogle Scholar
  6. Carrareto Alves LM, Marcondes de Souza JA, de Mello Varani A, de Macedo Lemos EG (2014) The family Rhizobiaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes, Alphaproteobacteria and Betaproteobacteria, 4th edn. Springer, Berlin, pp 419–437CrossRefGoogle Scholar
  7. Claus D (1992) A standardised Gram staining procedure. World J Microbiol Biotechnol 8:451–452CrossRefGoogle Scholar
  8. Collingridge PW, Kelly S (2012) MergeAlign: improving multiple sequence alignment performance by dynamic reconstruction of consensus multiple sequence alignments. BMC Bioinform 13:117CrossRefGoogle Scholar
  9. Cowan ST, Steel KJ (1974) Manual for the identification of medical bacteria, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  10. Felföldi T, Kéki Zs, Sipos R, Márialigeti K, Tindall BJ, Schumann P, Tóth EM (2011) Ottowia pentelensis sp. nov., a floc-forming betaproteobacterium isolated from an activated sludge system treating coke plant effluent. Int J Syst Evol Microbiol 61:2146–2150CrossRefGoogle Scholar
  11. Felföldi T, Vengring A, Kéki Zs, Márialigeti K, Schumann P, Tóth EM (2014) Eoetvoesia caeni gen. nov., sp. nov., isolated from an activated sludge system treating coke plant effluent. Int J Syst Evol Microbiol 64:1920–1925CrossRefGoogle Scholar
  12. Felföldi T, Ramganesh S, Somogyi B, Krett G, Jurecska L, Szabó A, Vörös L, Márialigeti K, Máthé I (2016) Winter planktonic microbial communities in highland aquatic habitats. Geomicrobiol J 33:494–504CrossRefGoogle Scholar
  13. Felföldi T, Fikó RD, Mentes A, Kovács E, Máthé I, Schumann P, Tóth EM (2017) Quisquiliibacterium transsilvanicum gen. nov., sp. nov., a novel betaproteobacterium isolated from a waste-treating bioreactor. Int J Syst Evol Microbiol 67:4742–4746CrossRefGoogle Scholar
  14. Heimbrook ME, Wang WL, Campbell G (1989) Staining bacterial flagella easily. J Clin Microbiol 27:2612–2615PubMedPubMedCentralGoogle Scholar
  15. Hugh R, Leifson E (1953) The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by Gram negative bacteria. J Bacteriol 66:24–26PubMedPubMedCentralGoogle Scholar
  16. Hunter WJ, Kuykendall LD, Manter DK (2007) Rhizobium selenireducens sp. nov.: a selenite-reducing alpha-Proteobacteria isolated from a bioreactor. Curr Microbiol 55:455–460CrossRefGoogle Scholar
  17. Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351CrossRefGoogle Scholar
  18. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  19. Kuykendall LD, Young JM, Martínez-Romero E, Kerr A, Sawada H (2005) Genus Rhizobium. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, the Proteobacteria, Part C, The Alpha-, Beta-, Delta-, and Epsilonproteobacteria, 2nd edn. Springer, New York, pp 325–340CrossRefGoogle Scholar
  20. Lee M, Woo SG, Ten LN (2011) Shinella daejeonensis sp. nov., a nitrate-reducing bacterium isolated from sludge of a leachate treatment plant. Int J Syst Evol Microbiol 61:2123–2128CrossRefGoogle Scholar
  21. Liu Y, Wang RP, Ren C, Lai QL, Zeng RY (2015) Rhizobium marinum sp. nov., a malachite-green-tolerant bacterium isolated from seawater. Int J Syst Evol Microbiol 65:4449–4454CrossRefGoogle Scholar
  22. Máthé I, Borsodi AK, Tóth EM, Felföldi T, Jurecska L, Krett G, Kelemen Zs, Elekes E, Barkács K, Márialigeti K (2014) Vertical physico-chemical gradients with distinct microbial communities in the hypersaline and heliothermal Lake Ursu (Sovata, Romania). Extremophiles 18:501–514CrossRefGoogle Scholar
  23. Mousavi SA, Österman J, Wahlberg N, Nesme X, Lavire C, Vial L, Paulin L, de Lajudie P, Lindström K (2014) Phylogeny of the Rhizobium-Allorhizobium-Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol 37:208–215CrossRefGoogle Scholar
  24. Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindström K (2015) Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol 38:84–90CrossRefGoogle Scholar
  25. Ormeño-Orrillo E, Martínez-Romero E (2013) Phenotypic tests in Rhizobium species description: an opinion and (a sympatric speciation) hypothesis. Syst Appl Microbiol 36:145–147CrossRefGoogle Scholar
  26. Ormeño-Orrillo E, Servín-Garcidueñas LE, Rogel MA, González V, Peralta H, Mora J, Martínez-Romero J, Martínez-Romero E (2015) Taxonomy of rhizobia and agrobacteria from the Rhizobiaceae family in light of genomics. Syst Appl Microbiol 38:287–291CrossRefGoogle Scholar
  27. Parte AC (2014) LPSN: list of prokaryotic names with standing in nomenclature. Nucl Acids Res 42:D613–D616CrossRefGoogle Scholar
  28. Pruesse E, Peplies J, Glöckner FO (2012) SINA: accurate high throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829CrossRefGoogle Scholar
  29. Puławska J, Kuzmanović N, Willems A, Pothier JF (2016) Pararhizobium polonicum sp. nov. isolated from tumors on stone fruit rootstocks. Syst Appl Microbiol 39:164–169CrossRefGoogle Scholar
  30. Quan ZX, Bae HS, Baek JH, Chen WF, Im WT, Lee ST (2005) Rhizobium daejeonense sp. nov. isolated from a cyanide treatment bioreactor. Int J Syst Evol Microbiol 55:2543–2549CrossRefGoogle Scholar
  31. Ramírez-Bahena MH, García-Fraile P, Peix A, Valverde A, Rivas R, Igual JM, Mateos PF, Martínez-Molina E, Velázquez E (2008) Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, Rhizobium phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R. leguminosarum DSM 30132 (= NCIMB 11478) as Rhizobium pisi sp. nov. Int J Syst Evol Microbiol 58:2484–2490CrossRefGoogle Scholar
  32. Remigi P, Zhu J, Young JP, Masson-Boivin C (2016) Symbiosis within symbiosis: evolving nitrogen-fixing legume symbionts. Trends Microbiol 24:63–75CrossRefGoogle Scholar
  33. Román-Ponce B, Zhang YJ, Vásquez-Murrieta SM, Sui HX, Chen FW, Padilla CAJ, Guo WX, Gao LJ, Yan J, Wei HG, Wang TE (2016) Rhizobium acidisoli sp. nov., isolated from root nodules of Phaseolus vulgaris in acid soils. Int J Syst Evol Microbiol 66:398–406CrossRefGoogle Scholar
  34. Saïdi S, Ramírez-Bahena MH, Santillana N, Zúñiga D, Álvarez-Martínez E, Peix A, Mhamdi R, Velázquez E (2014) Rhizobium laguerreae sp. nov. nodulates Vicia faba on several continents. Int J Syst Evol Microbiol 64:242–247CrossRefGoogle Scholar
  35. Sheu SY, Huang HW, Young CC, Chen WM (2015) Rhizobium alvei sp. nov., isolated from a freshwater river. Int J Syst Evol Microbiol 65:472–478CrossRefGoogle Scholar
  36. Sheu SY, Chen ZH, Young CC, Chen WM (2016) Rhizobium ipomoeae sp. nov., isolated from a water convolvulus field. Int J Syst Evol Microbiol 66:1633–1640CrossRefGoogle Scholar
  37. Slater SC, Goldman BS, Goodner B, Setubal JC, Farrand SK, Nester EW, Burr TJ, Banta L, Dickerman AW, Paulsen I, Otten L, Suen G, Welch R, Almeida NF, Arnold F, Burton OT, Du Z, Ewing A, Godsy E, Heisel S, Houmiel KL, Jhaveri J, Lu J, Miller NM, Norton S, Chen Q, Phoolcharoen W, Ohlin V, Ondrusek D, Pride N, Stricklin SL, Sun J, Wheeler C, Wilson L, Zhu H, Wood DW (2009) Genome sequences of three agrobacterium biovars help elucidate the evolution of multichromosome genomes in bacteria. J Bacteriol 191:2501–2511CrossRefGoogle Scholar
  38. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654Google Scholar
  39. Subhash Y, Lee SS (2016) Shinella curvata sp. nov., isolated from hydrocarbon-contaminated desert sands. Int J Syst Evol Microbiol 66:3929–3934CrossRefGoogle Scholar
  40. Tarrand JJ, Gröschel DHM (1982) Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 16:772–774PubMedPubMedCentralGoogle Scholar
  41. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266CrossRefGoogle Scholar
  42. Tóth E, Szuróczki S, Kéki Zs, Bóka K, Szili-Kovács T, Schumann P (2017) Gellertiella hungarica gen. nov., sp. nov., a novel bacterium of the family Rhizobiaceae isolated from a spa in Budapest. Int J Syst Evol Microbiol 67:4565–4571CrossRefGoogle Scholar
  43. Vaidya G, Lohman DJ, Meier R (2011) SequenceMatrix: concatenation software for the fast assembly of multigene datasets with character set and codon information. Cladistics 27:171–180CrossRefGoogle Scholar
  44. Vinuesa P, Silva C, Werner D, Martínez-Romero E (2005) Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 34:29–54CrossRefGoogle Scholar
  45. Yoon SH, Ha S, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617CrossRefGoogle Scholar
  46. Young JM, Kuykendall LD, Martínez-Romero E, Kerr A, Sawada H et al (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 51:89–103CrossRefGoogle Scholar
  47. Zhang RJ, Hou BC, Wang ET, Li Y, Zhang XX, Chen WX (2011) Rhizobium tubonense sp. nov., isolated from root nodules of Oxytropis glabra. Int J Syst Evol Microbiol 61:512–517CrossRefGoogle Scholar
  48. Zhang YJ, Zheng WT, Everall I, Young JP, Zhang XX, Tian CF, Sui XH, Wang ET, Chen WX (2015) Rhizobium anhuiense sp. nov., isolated from effective nodules of Vicia faba and Pisum sativum. Int J Syst Evol Microbiol 65:2960–2967CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BioengineeringSapientia Hungarian University of TransylvaniaMiercurea CiucRomania
  2. 2.Department of MicrobiologyELTE Eötvös Loránd UniversityBudapestHungary
  3. 3.Leibniz Institute DSMZ - German Collection of Microorganisms and Cell CulturesBraunschweigGermany

Personalised recommendations