Antonie van Leeuwenhoek

, Volume 111, Issue 11, pp 2061–2078 | Cite as

Compositional and abundance changes of nitrogen-cycling genes in plant-root microbiomes along a salt marsh chronosequence

  • Miao WangEmail author
  • Jan Henk Veldsink
  • Francisco Dini-Andreote
  • Joana Falcão Salles
Original Paper


Disentangling the relative influences of soil properties and plant-host on root-associated microbiomes in natural systems is challenging, given that spatially segregated soil types display distinct historical legacies. In addition, distant locations may also lead to biogeographical patterns of microbial communities. Here, we used an undisturbed salt marsh chronosequence spanning over a century of ecosystem development to investigate changes in the community composition and abundance of a set of nitrogen-cycling genes. Specifically, we targeted genes of diazotrophs and ammonia oxidizers associated with the bulk and rhizosphere soil of the plant species Limonium vulgare. Samples were collected across five distinct successional stages of the chronosequence (ranging from 5 to 105 years) at two time-points. Our results indicate that soil variables such as sand:silt:clay % content and pH strongly relates to the abundance of N-cycling genes in the bulk soil. However, in the rhizosphere samples, the abundance of ammonia-oxidizing organisms (both bacteria and archaea, AOB and AOA, respectively) was relatively constant across most of the successional stages, albeit displaying seasonal variation. This result indicates a potentially stronger control of plant host (rather than soil) on the abundance of these organisms. Interestingly, the plant host did not have a significant effect on the composition of AOA and AOB communities, being mostly divergent according to soil successional stages. The abundance of diazotrophic communities in rhizosphere samples was more affected by seasonality than those of bulk soil. Moreover, the abundance pattern of diazotrophs in the rhizosphere related to the systematic increase of plant biomass and soil organic matter along the successional gradient. These results suggest a potential season-dependent regulation of diazotrophs exerted by the plant host. Overall, this study contributes to a better understanding of how the natural formation of a soil and host plants influence the compositional and abundance changes of nitrogen-cycling genes in bulk and rhizosphere soil microhabitats.


nifH amoRhizosphere Ecological succession Salt marsh Limonium vulgare 



We thank Han Olff, Matty Berg, Chris Smit, Maarten Schrama and Ruth Howison for information on sampling locations and plant species determination. We are grateful to Jolanda K Brons for sampling expeditions. We also thank Nelly D. Eck for assisting soil physicochemical analyses. We thank the ‘Nederlandse Vereniging voor Natuurmonumenten’ for granting access to the salt marsh. This work was supported by China Scholarship Council, on a personal grant to MW.

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10482_2018_1098_MOESM1_ESM.pdf (903 kb)
Supplementary material 1 (PDF 902 kb)
10482_2018_1098_MOESM2_ESM.docx (28 kb)
Supplementary material 2 (DOCX 27 kb)


  1. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. CrossRefGoogle Scholar
  2. Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84:511–525.[0511:CAOPCA]2.0.CO;2 CrossRefGoogle Scholar
  3. Avrahami S, Conrad R (2005) Cold-temperate climate: a factor for selection of ammonia oxidizers in upland soil? Can J Microbiol 51:709–714. CrossRefPubMedGoogle Scholar
  4. Bach H-J, Tomanova J, Schloter M, Munch JC (2002) Enumeration of total bacteria and bacteria with genes for proteolytic activity in pure cultures and in environmental samples by quantitative PCR mediated amplification. J Microbiol Methods 49:235–245. CrossRefPubMedGoogle Scholar
  5. Bannert A, Kleineidam K, Wissing L et al (2011) Changes in diversity and functional gene abundances of microbial communities involved in nitrogen fixation, nitrification and denitrification comparing a tidal wetland to paddy soils cultivated for different time periods. Appl Environ Microbiol 77:6109–6116. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Banning NC, Maccarone LD, Fisk LM, Murphy DV (2015) Ammonia-oxidising bacteria not archaea dominate nitrification activity in semi-arid agricultural soil. Sci Rep 5:11146. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Beman JM, Popp BN, Francis CA (2008) Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. ISME J 2:429–441. CrossRefPubMedGoogle Scholar
  8. Bernhard AE, Donn T, Giblin AE, Stahl DA (2005) Loss of diversity of ammonia-oxidizing bacteria correlates with increasing salinity in an estuary system. Environ Microbiol 7:1289–1297. CrossRefPubMedGoogle Scholar
  9. Brankatschk R, Töwe S, Kleineidam K et al (2011) Abundances and potential activities of nitrogen cycling microbial communities along a chronosequence of a glacier forefield. ISME J 5:1025–1037. CrossRefPubMedGoogle Scholar
  10. Bürgmann H, Meier S, Bunge M et al (2005) Effects of model root exudates on structure and activity of a soil diazotroph community. Environ Microbiol 7:1711–1724. CrossRefPubMedGoogle Scholar
  11. Caffrey JM, Hollibaugh JT, Bano N, Haskins J (2010) Effects of upwelling on short-term variability in microbial and biogeochemical processes in estuarine sediments from Elkhorn Slough, California, USA. Aquat Microb Ecol 58:261–271. CrossRefGoogle Scholar
  12. Chaudhary HJ, Peng G, Hu M et al (2012) Genetic diversity of endophytic diazotrophs of the wild rice, Oryza alta and identification of the new diazotroph, Acinetobacter oryzae sp. nov. Microb Ecol 63:813–821. CrossRefPubMedGoogle Scholar
  13. Chaudhary DR, Gautam RK, Yousuf B et al (2015) Nutrients, microbial community structure and functional gene abundance of rhizosphere and bulk soils of halophytes. Appl Soil Ecol 91:16–26. CrossRefGoogle Scholar
  14. Cibichakravarthy B, Preetha R, Sundaram SP et al (2012) Diazotrophic diversity in the rhizosphere of two exotic weed plants, Prosopis juliflora and Parthenium hysterophorus. World J Microbiol Biotechnol 28:605–613. CrossRefPubMedGoogle Scholar
  15. Costa R, Götz M, Mrotzek N et al (2006) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol Ecol 56:236–249. CrossRefPubMedGoogle Scholar
  16. De Boer W, Kowalchuk GA (2001) Nitrification in acid soils: micro-organisms and mechanisms. Soil Biol Biochem 33:853–866. CrossRefGoogle Scholar
  17. De Boer W, Klein Gunnewiek PA, Laanbroek HJ (1995) Ammonium-oxidation at low pH by a chemolithotrophic bacterium belonging to the genus Nitrosospira. Soil Biol Biochem 27:127–132. CrossRefGoogle Scholar
  18. Di HJ, Cameron KC, Shen JP et al (2010) Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiol Ecol 72:386–394. CrossRefPubMedGoogle Scholar
  19. Diallo MD, Willems A, Vloemans N et al (2004) Polymerase chain reaction denaturing gradient gel electrophoresis analysis of the N2-fixing bacterial diversity in soil under Acacia tortilis ssp. raddiana and Balanites aegyptiaca in the dryland part of Senegal. Environ Microbiol 6:400–415. CrossRefGoogle Scholar
  20. Dias ACF, Hoogwout EF, Pereira e Silva MC et al (2012) Potato cultivar type affects the structure of ammonia oxidizer communities in field soil under potato beyond the rhizosphere. Soil Biol Biochem 50:85–95. CrossRefGoogle Scholar
  21. Dini-Andreote F, Pereira e Silva MC, Triado X et al (2014) Dynamics of bacterial community succession in a salt marsh chronosequence: evidences for temporal niche partitioning. ISME J 8:1989–2001. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Dini-Andreote F, Stegen JC, van Elsas JD, Salles JF (2015) Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc Natl Acad Sci USA 112:1326–1332. CrossRefGoogle Scholar
  23. Dini-Andreote F, de Brossi MJ, del van Elsas JD, Salles JF (2016) Reconstructing the genetic potential of the microbially-mediated nitrogen cycle in a salt marsh ecosystem. Front Microbiol 7:1–13. CrossRefGoogle Scholar
  24. Dotaniya ML, Meena VD (2015) Rhizosphere effect on nutrient availability in soil and its uptake by plants: a Review. Proc Natl Acad Sci India Sect B Biol Sci 85:1–12. CrossRefGoogle Scholar
  25. Engelhard M, Hurek T, Reinhold-Hurek B (2000) Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environ Microbiol 2:131–141. CrossRefPubMedGoogle Scholar
  26. Erguder TH, Boon N, Wittebolle L et al (2009) Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol Rev 33:855–869. CrossRefPubMedGoogle Scholar
  27. Fan F, Zhang F, Lu Y (2011) Linking plant identity and interspecific competition to soil nitrogen cycling through ammonia oxidizer communities. Soil Biol Biochem 43:46–54. CrossRefGoogle Scholar
  28. Francis CA, Roberts KJ, Beman JM et al (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102:14683–14688. CrossRefPubMedGoogle Scholar
  29. Friendly M (2002) Corrgrams: exploratory displays for correlation matrices. Am Stat 34:1447–1449. CrossRefGoogle Scholar
  30. Galloway JN, Schlesinger WH, Levy H et al (1995) Nitrogen fixation: anthropogenic enhancement-environmental response. Global Biogeochem Cycles 9:235–252. CrossRefGoogle Scholar
  31. Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270. CrossRefPubMedGoogle Scholar
  32. Garbeva P, van Elsas JD, van Veen JA (2008) Rhizosphere microbial community and its response to plant species and soil history. Plant Soil 302:19–32. CrossRefGoogle Scholar
  33. Glaser K, Hackl E, Inselsbacher E et al (2010) Dynamics of ammonia-oxidizing communities in barley-planted bulk soil and rhizosphere following nitrate and ammonium fertilizer amendment. FEMS Microbiol Ecol 74:575–591. CrossRefPubMedGoogle Scholar
  34. Gubry-Rangin C, Hai B, Quince C et al (2011) Niche specialization of terrestrial archaeal ammonia oxidizers. Proc Natl Acad Sci USA 108:21206–21211. CrossRefPubMedGoogle Scholar
  35. Gupta VVSR, Roper MM (2010) Protection of free-living nitrogen-fixing bacteria within the soil matrix. Soil Tillage Res 109:50–54. CrossRefGoogle Scholar
  36. Hai B, Diallo NH, Sall S et al (2009) Quantification of key genes steering the microbial nitrogen cycle in the rhizosphere of sorghum cultivars in tropical agroecosystems. Appl Environ Microbiol 75:4993–5000. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Harrell FE, Dupont C et al (2017) Hmisc: Harrell miscellaneous. R package version 4.0-3.
  38. Hatzenpichler R, Lebedeva EV, Spieck E et al (2008) A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proc Natl Acad Sci USA 105:2134–2139. CrossRefPubMedGoogle Scholar
  39. Hayden HL, Drake J, Imhof M et al (2010) The abundance of nitrogen cycle genes amoA and nifH depends on land-uses and soil types in South-Eastern Australia. Soil Biol Biochem 42:1774–1783. CrossRefGoogle Scholar
  40. Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152. CrossRefGoogle Scholar
  41. Horz H-P, Barbrook A, Field CB, Bohannan BJM (2004) Ammonia-oxidizing bacteria respond to multifactorial global change. Proc Natl Acad Sci USA 101:15136–15141. CrossRefPubMedGoogle Scholar
  42. Hsu SF, Buckley DH (2009) Evidence for the functional significance of diazotroph community structure in soil. ISME J 3:124–136. CrossRefPubMedGoogle Scholar
  43. Inceoǧlu O, Hoogwout EF, Hill P, van Elsas JD (2010) Effect of DNA extraction method on the apparent microbial diversity of soil. Appl Environ Microbiol 76:3378–3382. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Jackson LE, Burger M, Cavagnaro TR (2008) Roots, nitrogen transformations, and ecosystem services. Annu Rev Plant Biol 59:341–363. CrossRefPubMedGoogle Scholar
  45. Jung J, Yeom J, Kim J et al (2011) Change in gene abundance in the nitrogen biogeochemical cycle with temperature and nitrogen addition in Antarctic soils. Res Microbiol 162:1018–1026. CrossRefGoogle Scholar
  46. Karl D, Michaels A, Bergman B et al (2002) Dinitrogen fixation in the world’s oceans. Biogeochemistry 57–58:47–98. CrossRefGoogle Scholar
  47. Knauth S, Hurek T, Brar D, Reinhold-Hurek B (2005) Influence of different Oryza cultivars on expression of nifH gene pools in roots of rice. Environ Microbiol 7:1725–1733. CrossRefPubMedGoogle Scholar
  48. Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55:485–529. CrossRefPubMedGoogle Scholar
  49. Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415. CrossRefGoogle Scholar
  50. Lauber CL, Ramirez KS, Aanderud Z et al (2013) Temporal variability in soil microbial communities across land-use types. ISME J 7:1641–1650. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lehtovirta-Morley LE, Stoecker K, Vilcinskas A et al (2011) Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc Natl Acad Sci USA 108:15892–15897. CrossRefPubMedGoogle Scholar
  52. Leininger S, Urich T, Schloter M et al (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809. CrossRefPubMedGoogle Scholar
  53. Levy-Booth DJ, Winder RS (2010) Quantification of nitrogen reductase and nitrite reductase genes in soil of thinned and clear-cut douglas-fir stands by using real-time PCR. Appl Environ Microbiol 76:7116–7125. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Li X, Rui J, Xiong J et al (2014) Functional potential of soil microbial communities in the maize rhizosphere. PLoS ONE 9:e112609. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Li J, Nedwell DB, Beddow J et al (2015) amoA gene abundances and nitrification potential rates suggest that benthic ammonia-oxidizing bacteria and not archaea dominate N cycling in the Colne estuary, United Kingdom. Appl Environ Microbiol 81:159–165. CrossRefPubMedGoogle Scholar
  56. Liu Y, Zhou H, Wang J et al (2015) Short-term response of nitrifier communities and potential nitrification activity to elevated CO2 and temperature interaction in a Chinese paddy field. Appl Soil Ecol 96:88–98. CrossRefGoogle Scholar
  57. López-Gutiérrez JC, Henry S, Hallet S et al (2004) Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR. J Microbiol Methods 57:399–407. CrossRefPubMedGoogle Scholar
  58. Lovell CR, Piceno YM, Quattro JM, Bagwell CE (2000) Molecular analysis of diazotroph diversity in the rhizosphere of the smooth cordgrass, Spartina alterniflora. Appl Environ Microbiol 66:3814–3822. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Mao Y-J, Yannarell AC, Davis SC, Mackie RI (2013) Impact of different bioenergy crops on N-cycling bacterial and archaeal communities in soil. Environ Microbiol 15:928–942. CrossRefPubMedGoogle Scholar
  60. Marschner P, Yang C-H, Lieberei R, Crowley D (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437–1445. CrossRefGoogle Scholar
  61. Martens-Habbena W, Berube PM, Urakawa H et al (2009) Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461:976–979. CrossRefPubMedGoogle Scholar
  62. Mergel A, Kloos K, Bothe H (2001) Seasonal fluctuations in the population of denitrifying and N2-fixing bacteria in an acid soil of a Norway spruce forest. Plant Soil 230:145–160. CrossRefGoogle Scholar
  63. Mobarry B, Wagner M, Urbain V et al (1996) Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl Environ Microbiol 62:2156–2162PubMedPubMedCentralGoogle Scholar
  64. Nelson KN, Neilson JW, Root RA et al (2015) Abundance and activity of 16S rRNA, amoA and nifH bacterial genes during assisted phytostabilization of mine tailings. Int J Phytoremediation 17:493–502. CrossRefPubMedPubMedCentralGoogle Scholar
  65. Nicol GW, Schleper C (2006) Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle? Trends Microbiol 14:207–212. CrossRefPubMedGoogle Scholar
  66. Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 10:2966–2978. CrossRefPubMedGoogle Scholar
  67. Okano Y, Hristova KR, Christian M et al (2004) Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol 70:1008–1016. CrossRefPubMedPubMedCentralGoogle Scholar
  68. Oksanen J, Kindt R, Legendre P et al (2007). Vegan: community ecology package. R package version 1.8-5.
  69. Olff H, de Leeuw J, Bakker JP et al (1997) Vegetation succession and herbivory in a salt marsh: changes induced by sea level rise and silt deposition it along an elevational gradient. Br Ecol Soc 85:799–814Google Scholar
  70. Pereira e Silva, Schmitt H, MC, Semenov AV, Schmitt H et al (2013) Microbe-mediated processes as indicators to establish the normal operating range of soil functioning. Soil Biol Biochem 57:995–1002. CrossRefGoogle Scholar
  71. Pereira e Silva MC, Semenov AV, van Elsas JD, Salles JF (2011) Seasonal variations in the diversity and abundance of diazotrophic communities across soils. FEMS Microbiol Ecol 77:57–68. CrossRefPubMedGoogle Scholar
  72. Petersen DG, Blazewicz SJ, Firestone M et al (2012) Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska. Environ Microbiol 14:993–1008. CrossRefPubMedGoogle Scholar
  73. Philippot L, Hallin S, Börjesson G, Baggs EM (2009) Biochemical cycling in the rhizosphere having an impact on global change. Plant Soil 321:61–81. CrossRefGoogle Scholar
  74. Piceno YM, Lovell CR (2000) Stability in natural bacterial communities: I. Nutrient addition effects on rhizosphere diazotroph assemblage composition. Microb Ecol 39:32–40. CrossRefPubMedGoogle Scholar
  75. Poly F, Monrozier LJ, Bally R (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103. CrossRefPubMedGoogle Scholar
  76. Prosser JI, Nicol GW (2008) Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol 10:2931–2941. CrossRefPubMedGoogle Scholar
  77. Prosser JI, Nicol GW (2012) Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol 20:523–531. CrossRefPubMedGoogle Scholar
  78. Raskin L, Stromley JM, Rittmann BE, Stahl DA (1994) Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60:1232–1240PubMedPubMedCentralGoogle Scholar
  79. Reardon CL, Gollany HT, Wuest SB (2014) Diazotroph community structure and abundance in wheat-fallow and wheat-pea crop rotations. Soil Biol Biochem 69:406–412. CrossRefGoogle Scholar
  80. Rodríguez-Blanco A, Sicardi M, Frioni L (2015) Plant genotype and nitrogen fertilization effects on abundance and diversity of diazotrophic bacteria associated with maize (Zea mays L.). Biol Fertil Soils 51:391–402. CrossRefGoogle Scholar
  81. Roesch LFW, Olivares FL, Pereira Passaglia LM et al (2006) Characterization of diazotrophic bacteria associated with maize: effect of plant genotype, ontogeny and nitrogen-supply. World J Microbiol Biotechnol 22:967–974. CrossRefGoogle Scholar
  82. Roesch LFW, Camargo FAO, Bento FM, Triplett EW (2008) Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant Soil 302:91–104. CrossRefGoogle Scholar
  83. Romero IC, Jacobson M, Fuhrman JA et al (2012) Long-term nitrogen and phosphorus fertilization effects on N2 fixation rates and nifH gene community patterns in mangrove sediments. Mar Ecol 33:117–127. CrossRefGoogle Scholar
  84. Rotthauwe J, Witzel K, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712PubMedPubMedCentralGoogle Scholar
  85. Salles JF, van Elsas JD, van Veen JA (2006) Effect of agricultural management regime on Burkholderia community structure in soil. Microb Ecol 52:267–279. CrossRefPubMedGoogle Scholar
  86. Salles JF, Pereira e Silva MC, Dini-Andreote F et al (2017) Successional patterns of key genes and processes involved in the microbial nitrogen cycle in a salt marsh chronosequence. Biogeochemistry 132:185–201. CrossRefGoogle Scholar
  87. Santoro AE, Francis CA, de Sieyes NR, Boehm AB (2008) Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary. Environ Microbiol 10:1068–1079. CrossRefPubMedGoogle Scholar
  88. Schrama M, Berg MP, Olff H (2012) Ecosystem assembly rules: the interplay of green and brown webs during salt marsh succession. Ecology 93:2353–2364. CrossRefPubMedGoogle Scholar
  89. Simonet P, Grosjean MC, Misra AK et al (1991) Frankia genus-specific characterization by polymerase chain reaction. Appl Environ Microbiol 57:3278–3286PubMedPubMedCentralGoogle Scholar
  90. Soares RA, Roesch LFW, Zanatta G et al (2006) Occurrence and distribution of nitrogen fixing bacterial community associated with oat (Avena sativa) assessed by molecular and microbiological techniques. Appl Soil Ecol 33:221–234. CrossRefGoogle Scholar
  91. Sorensen J, Sessitsch A (2007) Plant-associated bacteria—lifestyle and molecular interactions. In: van Elsas JD, Jansson JD, Trevors JT (eds) Modern soil microbiology, 2nd edn. CRC Press, Boca Raton, pp 211–236Google Scholar
  92. Stahl DA, Amann R (1991) Development and application of nucleic acid probes. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 205–248Google Scholar
  93. Tan Z, Hurek T, Reinhold-Hurek B (2003) Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice. Environ Microbiol 5:1009–1015. CrossRefPubMedGoogle Scholar
  94. Thion CE, Poirel JD, Cornulier T et al (2016) Plant nitrogen-use strategy as a driver of rhizosphere archaeal and bacterial ammonia oxidiser abundance. FEMS Microbiol Ecol 92:1–11. CrossRefGoogle Scholar
  95. Tourna M, Freitag TE, Nicol GW, Prosser JI (2008) Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ Microbiol 10:1357–1364. CrossRefPubMedGoogle Scholar
  96. Ueda T, Suga Y, Yahiro N, Matsuguchi T (1995) Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J Bacteriol 177:1414–1417. CrossRefPubMedPubMedCentralGoogle Scholar
  97. Verhamme DT, Prosser JI, Nicol GW (2011) Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J 5:1067–1071. CrossRefPubMedPubMedCentralGoogle Scholar
  98. Wakelin SA, Gupta VVSR, Forrester ST (2010) Regional and local factors affecting diversity, abundance and activity of free-living, N2-fixing bacteria in Australian agricultural soils. Pedobiologia (Jena) 53:391–399. CrossRefGoogle Scholar
  99. Walker JKM, Egger KN, Henry GHR (2008) Long-term experimental warming alters nitrogen-cycling communities but site factors remain the primary drivers of community structure in high arctic tundra soils. ISME J 2:982–995. CrossRefPubMedGoogle Scholar
  100. Wang M, Yang P, Salles JF (2016) Distribution of root-associated bacterial communities along a salt-marsh primary succession. Front Plant Sci 6:1188. CrossRefPubMedPubMedCentralGoogle Scholar
  101. Wankel SD, Mosier AC, Hansel CM et al (2011) Spatial variability in nitrification rates and ammonia-oxidizing microbial communities in the agriculturally impacted Elkhorn Slough estuary, California. Appl Environ Microbiol 77:269–280. CrossRefPubMedGoogle Scholar
  102. Wartiainen I, Eriksson T, Zheng W, Rasmussen U (2008) Variation in the active diazotrophic community in rice paddy-nifH PCR-DGGE analysis of rhizosphere and bulk soil. Appl Soil Ecol 39:65–75. CrossRefGoogle Scholar
  103. Wuchter C, Abbas B, Coolen MJL et al (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci USA 103:12317–12322. CrossRefPubMedGoogle Scholar
  104. Yao H, Campbell CD, Chapman SJ et al (2013) Multi-factorial drivers of ammonia oxidizer communities: evidence from a national soil survey. Environ Microbiol 15:2545–2556. CrossRefPubMedGoogle Scholar
  105. Yim WJ, Poonguzhali S, Madhaiyan M et al (2009) Characterization of plant-growth promoting diazotrophic bacteria isolated from field grown Chinese cabbage under different fertilization conditions. J Microbiol 47:147–155. CrossRefPubMedGoogle Scholar
  106. Zhang Y, Li D, Wang H et al (2006) Molecular diversity of nitrogen-fixing bacteria from the Tibetan Plateau, China. FEMS Microbiol Lett 260:134–142. CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Group of Microbial Community Ecology, Genomics Research in Ecology and Evolution in Nature, Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands

Personalised recommendations