Antonie van Leeuwenhoek

, Volume 111, Issue 10, pp 1913–1923 | Cite as

Benzalkonium chloride tolerance of Listeria monocytogenes strains isolated from a meat processing facility is related to presence of plasmid-borne bcrABC cassette

  • Jana Minarovičová
  • Adriana Véghová
  • Mária Mikulášová
  • Romana Chovanová
  • Katarína Šoltýs
  • Hana Drahovská
  • Eva KaclíkováEmail author
Original Paper


Listeria monocytogenes is a serious foodborne pathogen capable of persisting in food processing environments. Tolerance to disinfectants used in industrial settings constitutes an important factor of Listeria survival. In the present study, the mechanism of tolerance to benzalkonium chloride (BAC) was investigated in 77 L. monocytogenes isolates from a meat facility. By PCR approach, the mdrL and lde chromosomal efflux pump genes were detected in all isolates. No isolate was positive for qacH and emrE genes. However, the bcrABC cassette was present in 17 isolates of serogroup IIa possessing the same AscI/ApaI pulsotype, the operon being localized on a plasmid. The significant relation of BAC tolerance with bcrABC presence was confirmed as all bcrABC positive isolates showed the highest minimal inhibitory concentration (MIC) values for BAC and increased sensitivity to BAC was observed after plasmid curing. No effect of the efflux pump inhibitor reserpine on BAC tolerance in bcrABC positive strains was observed in contrast to all bcrABC negative strains. Lower ethidium bromide efflux in bcrABC positive isolates compared to bcrABC negative and plasmid-cured L. monocytogenes isolates was observed. The expression of bcrABC genes was BAC-induced. The confirmed effect of bcrABC to increased BAC tolerance, coupled with its plasmid location, may be an important factor in potential dissemination of the biocide resistance among Listeria species. The understanding of molecular mechanisms of biocide tolerance should help to improve control measures to prevent further spread of L. monocytogenes in food production environments with frequent use of BAC.


Listeria monocytogenes Benzalkonium chloride tolerance Efflux pumps bcrABC casette 



This work was supported by Slovak Research and Development Agency under the contract No. APVV-0498-12, by the VEGA Grant of the Ministry of Education of the Slovak Republic No. 1/0793/16 and by the project ITMS 26240120027 from OPRaD funded by the ERDF. We thank to Dr. Taurai Tasara from Institute für Lebensmittelsicherheit und Hygiene Universität Zürich for the provision of DNAs isolated from L. monocytogenes strains used as reference for PCR detection of emrE and qacH genes.

Conflict of interest

No conflict of interest declared.


  1. Almeida G, Magalhães R, Carneiro L, Santos I, Silva J, Ferreira V, Hogg T, Teixeira P (2013) Foci of contamination of Listeria monocytogenes in different cheese processing plants. Int J Food Microbiol 167:303–309CrossRefGoogle Scholar
  2. Dutta V, Elhanafi D, Kathariou S (2013) Conservation and distribution of the benzalkonium chloride resistance cassette bcrABC in Listeria monocytogenes. Appl Environ Microbiol 79:6067–6074CrossRefGoogle Scholar
  3. Ebner R, Stephan R, Althaus D, Brisse S, Maury M, Tasara T (2015) Phenotypic and genotypic characteristics of Listeria monocytogenes strains isolated during 2011–2014 from different food matrices in Switzerland. Food Control 57:321–326CrossRefGoogle Scholar
  4. EFSA (2016) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA J 14(12):4634Google Scholar
  5. EFSA (2017) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J 15(12):5077Google Scholar
  6. Elhanafi D, Dutta V, Kathariou S (2010) Genetic characterization of plasmid-associated benzalkonium chloride resistance determinants in a Listeria monocytogenes strain from the 1998–1999 outbreak. Appl Environ Microbiol 76:8231–8238CrossRefGoogle Scholar
  7. Gandhi M, Chikindas ML (2007) Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol 1:1–15CrossRefGoogle Scholar
  8. Gilmour M, Graham M, Van Domselaar G, Tyler S, Kent H, Trout-Yakel K, Larios O, Allen V, Lee B, Nadon C (2010) High-throughput genome sequencing of two Listeria monocytogenes clinical isolates during a large foodborne outbreak. BMC Gen 11:120CrossRefGoogle Scholar
  9. Heir E, Lindstedt BA, Røtterud OJ, Vardund T, Kapperud T, Nesbakken G (2004) Molecular epidemiology and disinfectant susceptibility of Listeria monocytogenes from meat processing plants and human infections. Int J Food Microbiol 96:85–96CrossRefGoogle Scholar
  10. Jiang X, Yu T, Liang Y, Ji S, Guo X, Ma J, Zhou L (2016) Efflux pump-mediated benzalkonium chloride resistance in Listeria monocytogenes isolated from retail food. Int J Food Microbiol 217:141–145CrossRefGoogle Scholar
  11. Katharios-Lanwermeyer S, Rakic-Martinez M, Elhanafi D, Ratani S, Tiedje JM, Kathariou S (2012) Coselection of cadmium and benzalkonium chloride resistance in conjugative transfers from nonpathogenic Listeria spp. to other listeriae. Appl Environ Microbiol 78:7549–7556CrossRefGoogle Scholar
  12. Kirk MD, McKay I, Hall GV, Dalton CB, Stafford R, Unicomb L, Gregory J (2008) Foodborne disease in Australia: the OzFoodNet experience. Clin Infect Dis 47:392–400CrossRefGoogle Scholar
  13. Kovacevic J, Ziegler J, Walecka-Zacharska E, Reimer A, Kitts DD, Gilmour MW (2016) Tolerance of Listeria monocytogenes to quarternary ammonium sanitizers is mediated by a novel efflux pump encoded by emrE. Appl Environ Microbiol 82:939–953CrossRefGoogle Scholar
  14. Lambert RJ, Pearson J (2000) Susceptibility testing: accurate and reproducibleminimum inhibitory concentration (MIC) and non-inhibitory concentration (NIC) values. J Appl Microbiol 88:784–790CrossRefGoogle Scholar
  15. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 4:402–408CrossRefGoogle Scholar
  16. López V, Villatoro D, Ortiz S, López P, Navas J, Dávila JC, Martínez-Suárez JV (2008) Molecular tracking of Listeria monocytogenes in an Iberian pig abattoir and processing plant. Meat Sci 78:130–134CrossRefGoogle Scholar
  17. Margolles A, Reyes-Gavilan CGD (1998) Characterization of plasmids from Listeria monocytogenes and Listeria innocua strains isolated from short-ripened cheeses. Int J Food Microbiol 39:231–236CrossRefGoogle Scholar
  18. Martínez-Suárez JV, Ortiz S, López-Alonso V (2016) Potential impact of the resistance to quarternary ammonium disinfectants on the persistence of Listeria monocytogenes in food processing environments. Front Microbiol 7:638CrossRefGoogle Scholar
  19. Mata MT, Baquero F, Pérez-Díaz JC (2000) A multidrug efflux transporter in Listeria monocytogenes. FEMS Microbiol Lett 187:185–188CrossRefGoogle Scholar
  20. Meier AB, Guldimann C, Markkula A, Pöntinen A, Korkeala H, Tasar T (2017) Comparative phenotypic and genotypic analysis of swiss and finnish listeria monocytogenes isolates with respect to benzalkonium chloride resistance. Front Microbiol 8:397PubMedPubMedCentralGoogle Scholar
  21. Mereghetti L, Quentin R, Marquet-Van Der Mee N, Audurier A (2000) Low sensitivity of Listeria monocytogenes to quarternary ammonium compounds. Appl Environ Microbiol 66:5083–5086CrossRefGoogle Scholar
  22. Müller A, Rychli K, Muhterem-Uyar M, Zaiser A, Stessl B, Guinane CM, Cotter PD, Wagner M, Schmitz-Esser S (2013) Tn6188—a novel transposon in Listeria monocytogenes responsible for tolerance to benzalkonium chloride. PLoS ONE 8:e76835CrossRefGoogle Scholar
  23. Ortiz S, López V, Villatoro D, López P, Dávila JC, Martínez-Suárez JV (2010) A 3-year surveillance of the genetic diversity and persistence of Listeria monocytogenes in an Iberian pig slaughterhouse and processing plant. Foodborne Pathog Dis 7:1177–1184CrossRefGoogle Scholar
  24. Ortiz S, López V, Martínez-Suárez JV (2014) Control of Listeria monocytogenes contamination in an Iberian pork processing plant and selection of benzalkonium chloride-resistant strains. Food Microbiol 39:81–88CrossRefGoogle Scholar
  25. Romanova NA, Wolffs P, Brovko LY, Griffiths MW (2006) Role of efflux pumps in adaptation and resistance of Listeria monocytogenes to benzalkonium chloride. Appl Environ Microbiol 72:3498–3503CrossRefGoogle Scholar
  26. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM (2011) Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 17:7–15CrossRefGoogle Scholar
  27. Soumet C, Ragimbeau C, Maris P (2005) Screening of benzalkonium chloride resistance in Listeria monocytogenes strains isolated during cold smoked fish production. Lett Appl Microbiol 41:291–296CrossRefGoogle Scholar
  28. Tamburro M, Ripabelli G, Fanelli I, Grasso GM, Sammarco ML (2010) Typing of Listeria monocytogenes strains isolated in Italy by inlA gene characterization and evaluation of a new cost-effective approach to antisera selection for serotyping. J Appl Microbiol 108:1602–1611CrossRefGoogle Scholar
  29. Tasara T, Stephan R (2006) Cold stress tolerance of Listeria monocytogenes: a review of molecular adaptive mechanisms and food safety implications. J Food Prot 69:1473–1484CrossRefGoogle Scholar
  30. Vazquez-Boland J, Dominguez-Bernal G, Gonzalez-Zorn B, Kreft J, Goebel W (2001) Pathogenicity islands and virulence evolution in Listeria. Microbes Infect 3:571–584CrossRefGoogle Scholar
  31. Véghová A, Minarovičová J, Koreňová J, Drahovská H, Kaclíková E (2017) Prevalence and tracing of persistent Listeria monocytogenes strains in meat processing facility production chain. J Food Safety 37:e12315CrossRefGoogle Scholar
  32. Viveiros M, Martins A, Paixão L, Rodrigues L, Martins M, Couto I, Fähnrich E, Kern WV, Amaral L (2008) Demonstration of intrinsic efflux activity of Escherichia coli K-12 AG100 by an automated ethidium bromide method. Int J Antimicrob Agents 31:458–462CrossRefGoogle Scholar
  33. Werbrouck H, Vermeulen A, Van Coillie E, Messens W, Herman L, Devlieghere F, Uyttendaele M (2009) Influence of acid stress on survival, expression of virulence genes and evasion capacity into Caco-2 cells of Listeria monocytogenes strains of different origins. Int J Food Microbiol 134:140–146CrossRefGoogle Scholar
  34. Xu D, Nie Q, Wang W, Shi L, Yan H (2016) Characterization of a transferable bcrABC and cadAC genes-harboring plasmid in Listeria monocytogenes strains isolated from food products of animal origin. Int J Food Microbiol 217:117–122CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jana Minarovičová
    • 1
  • Adriana Véghová
    • 1
  • Mária Mikulášová
    • 2
  • Romana Chovanová
    • 2
  • Katarína Šoltýs
    • 3
  • Hana Drahovská
    • 2
  • Eva Kaclíková
    • 1
    Email author
  1. 1.Food Research InstituteNational Agricultural and Food CentreBratislavaSlovakia
  2. 2.Department of Molecular Biology, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia
  3. 3.Science ParkComenius UniversityBratislavaSlovakia

Personalised recommendations