Antonie van Leeuwenhoek

, Volume 111, Issue 8, pp 1389–1401 | Cite as

Life at extreme elevations on Atacama volcanoes: the closest thing to Mars on Earth?

  • S. K. SchmidtEmail author
  • E. M. S. Gendron
  • K. Vincent
  • A. J. Solon
  • P. Sommers
  • Z. R. Schubert
  • L. Vimercati
  • D. L. Porazinska
  • J. L. Darcy
  • P. Sowell


Here we describe recent breakthroughs in our understanding of microbial life in dry volcanic tephra (“soil”) that covers much of the surface area of the highest elevation volcanoes on Earth. Dry tephra above 6000 m.a.s.l. is perhaps the best Earth analog for the surface of Mars because these “soils” are acidic, extremely oligotrophic, exposed to a thin atmosphere, high UV fluxes, and extreme temperature fluctuations across the freezing point. The simple microbial communities found in these extreme sites have among the lowest alpha diversity of any known earthly ecosystem and contain bacteria and eukaryotes that are uniquely adapted to these extreme conditions. The most abundant eukaryotic organism across the highest elevation sites is a Naganishia species that is metabolically versatile, can withstand high levels of UV radiation and can grow at sub-zero temperatures, and during extreme diurnal freeze–thaw cycles (e.g. − 10 to + 30 °C). The most abundant bacterial phylotype at the highest dry sites sampled (6330 m.a.s.l. on Volcán Llullaillaco) belongs to the enigmatic B12-WMSP1 clade which is related to the Ktedonobacter/Thermosporothrix clade that includes versatile organisms with the largest known bacterial genomes. Close relatives of B12-WMSP1 are also found in fumarolic soils on Volcán Socompa and in oligotrophic, fumarolic caves on Mt. Erebus in Antarctica. In contrast to the extremely low diversity of dry tephra, fumaroles found at over 6000 m.a.s.l. on Volcán Socompa support very diverse microbial communities with alpha diversity levels rivalling those of low elevation temperate soils. Overall, the high-elevation biome of the Atacama region provides perhaps the best “natural experiment” in which to study microbial life in both its most extreme setting (dry tephra) and in one of its least extreme settings (fumarolic soils).


Endolithic microbes Acidic soils Fumaroles B12-WMSP1 Spartobacteria Hypoliths 



We thank S.R.P. Halloy, P. Aráns, E.K. Costello, S.C. Reed, A. Seimon, G. Jesperson, T. Harris, M.E. Farias, C. Dorador, C. Vitry, P. Maciel, M. Perez, G. Zimmerman, and T. Bowen for advice and help in the field, and D.R. Bowling for help with measuring CO2.


This study was funded by the National Science Foundation of the U.S.A. (Grant Numbers DEB-1258160 and PLR-1443578).

Conflict of interest

The authors declare no conflicts of interest.


  1. Allmendinger RW, Jordan TE, Kay SM, Isacks BL (1997) The evolution of the Altiplano-Puna plateau of the Central Andes. Annu Rev Earth Planet Sci 25:139–174CrossRefGoogle Scholar
  2. Ambrizzi T, Hoskins BJ, Hsu HH (1995) Rossby wave propagation and teleconnection patterns in the austral winter. J Atmos Sci 52:3661–3672CrossRefGoogle Scholar
  3. Arroyo MTK, Squeo FA, Armesto JJ, Villagran C (1988) Effects of aridity on plant diversity in the northern Chilean Andes—results of a natural experiment. Ann Mo Bot Gard 75:55–78CrossRefGoogle Scholar
  4. Broady P, Given D, Greenfield L, Thompson K (1987) The biota and environment of fumaroles on Mt Melbourne, northern Victoria Land. Polar Biol 7:97–113CrossRefGoogle Scholar
  5. Cabrol NA, Feister U, Häder D, Piazena H, Grin EA, Klein A (2014) Record solar UV irradiance in the tropical Andes. Front Environ Sci. CrossRefGoogle Scholar
  6. Chang YJ et al (2011) Non-contiguous finished genome sequence and contextual data of the filamentous soil bacterium Ktedonobacter racemifer type strain (SOSP1-21). Stand Genom Sci 5:97–111CrossRefGoogle Scholar
  7. Cockell CS, Cousins C, Wilkinson PT, Olsson-Francis K (2014) Are thermophilic microorganisms active in cold environments? Int J Astrobiol 14:457–463CrossRefGoogle Scholar
  8. Costello EK, Schmidt SK (2006) Microbial diversity in alpine tundra wet meadow soil: novel Chloroflexi from a cold, water-saturated environment. Environ Microbiol 8:1471–1486CrossRefPubMedGoogle Scholar
  9. Costello EK, Halloy SRP, Reed SC, Sowell P, Schmidt SK (2009) Fumarole-supported islands of biodiversity within a hyperarid, high-elevation landscape on Socompa Volcano, Puna de Atacama, Andes. Appl Environ Microbiol 75:735–747CrossRefPubMedGoogle Scholar
  10. Crits-Christoph A et al (2013) Colonization patterns of soil microbial communities in the Atacama Desert. Microbiome 1:28. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Djokic T et al (2017) Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits. Nat Commun 8:15263CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dreesens LL, Lee CK, Cary SC (2014) The distribution and identity of edaphic fungi in the McMurdo Dry Valleys. Biology 3:466–483CrossRefPubMedPubMedCentralGoogle Scholar
  13. Francis PW, Gardeweg M, Ramirez CF, Rothery DA (1985) Catastrophic debris avalanche deposit of Socompa volcano, northern Chile. Geology 13:600–603CrossRefGoogle Scholar
  14. Freeman KR, Pescador M, Reed SC, Costello EK, Robeson MS, Schmidt SK (2009) Soil CO2 uptake and photoautotrophic community composition in high-elevation, “barren” soils. Environ Microbiol 11:674–686CrossRefPubMedGoogle Scholar
  15. Gonzalez SN, Romero N, Apella MC, Pesce de Ruiz Holgado A, Oliver G (1987) Existence of lactic acid bacteria in ecological pockets in highland areas. Microbiologie Alim Nut 5:317–323Google Scholar
  16. Goordial J, Davila A et al (2016) Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica. ISME J 10:1613–1624CrossRefPubMedPubMedCentralGoogle Scholar
  17. Graham JM (2004) The biological terraforming of Mars: planetary ecosynthesis as ecological succession on a global scale. Astrobiol 4:168–195CrossRefGoogle Scholar
  18. Halloy SRP (1991) Islands of life at 6000 m altitude: the environment of the highest autotrophic communities on Earth (Socompa Volcano, Andes). Arctic Alpine Res 23:247–262CrossRefGoogle Scholar
  19. Herbold CW, McDonald IR, Cary SC (2014a) Microbial ecology of geothermal habitats in Antarctica. In: Cowan D (ed) Antarctic terrestrial microbiology. Springer, Berlin, pp 181–215CrossRefGoogle Scholar
  20. Herbold CW, Lee CK, McDonald IR, Cary SC (2014b) Evidence of global-scale Aeolian dispersal and endemism in isolated geothermal microbial communities of Antarctica. Nat Commun 5:3875CrossRefPubMedGoogle Scholar
  21. Hubert C et al (2009) A Constant flux of diverse thermophilic bacteria into the cold Arctic seabed. Science 325:1541–1544CrossRefPubMedGoogle Scholar
  22. Janetschek H (1963) On the terrestrial fauna of the Ross-Sea area, Antarctica (preliminary report). Pac Insect 5:305–311Google Scholar
  23. King CE, King GM (2014) Description of Thermogemmatispora carboxidivorans sp. nov., a novel carbon-monoxide-oxidizing member of the class Ktedonobacteria isolated from a geothermally-heated biofilm, and analysis of carbon monoxide oxidation by members of the class Ktedonobacteria. Int J Syst Evol Microbiol 64:1244–1251CrossRefPubMedGoogle Scholar
  24. King AJ, Meyer AF, Schmidt SK (2008) High levels of microbial biomass and activity in unvegetated tropical and temperate alpine soils. Soil Biol Biochem 40:2605–2610CrossRefGoogle Scholar
  25. King AJ, Karki D, Nagy L, Racoviteanu A, Schmidt SK (2010a) Microbial biomass and activity in high elevation soils of the Annapurna and Sagarmatha regions of the Nepalese Himalayas. Himal J Sci. CrossRefGoogle Scholar
  26. King AJ, Freeman KR, McCormick KF, Lynch RC, Lozupone C, Knight R, Schmidt SK (2010b) Biogeography and habitat modeling of high-alpine bacteria. Nat Commun 1:53CrossRefPubMedGoogle Scholar
  27. Lynch R, King AJ, Farías ME, Sowell P, Vitry C, Schmidt SK (2012) The potential for microbial life in the highest-elevation (> 6000 masl) mineral soils of the Atacama region. J Geophys Res 117:G02028Google Scholar
  28. Lynch R, Darcy JL, Kane NC, Nemergut DR, Schmidt SK (2014) Metagenomic evidence for metabolism of trace atmospheric gases by high-elevation desert Actinobacteria. Front Microbiol 5:698CrossRefPubMedPubMedCentralGoogle Scholar
  29. Madden RA (1979) Observations of large-scale traveling Rossby waves. Rev Geophys 17:1935–1949CrossRefGoogle Scholar
  30. Polvani LM, Saravanan R (2000) The three-dimensional structure of breaking Rossby waves in the polar wintertime stratosphere. J Atmos Sci 57:3663–3685CrossRefGoogle Scholar
  31. Pulschen AA, Rodrigues F, Duarte RTD, Araujo GG, Santiago IF, Paulino-Lima IG, Rosa CA, Kato MJ, Pellizari VH, Galante D (2015) UV-resistant yeasts isolated from a high-altitude volcanic area in the Atacama Desert as eukaryotic models for Astrobiology. MicrobiologyOpen 4:574–588CrossRefPubMedPubMedCentralGoogle Scholar
  32. Reinhard J, Ceruti MC (2010) Inca rituals and sacred mountains. The Cotsen Institute of Archaeology Press, Los AngelesGoogle Scholar
  33. Richards JP, Villeneuve M (2001) The Llullaillaco volcano, northwest Argentina: construction by Pleistocene volcanism and destruction by sector collapse. J Volcanol Geotherm Res 105:77–105CrossRefGoogle Scholar
  34. Richter M, Schmidt D (2002) Cordillera de la Atacama—das trockenste Hochgebirge der Welt. Petermanns Geogr Mitt 146:48–57Google Scholar
  35. Robbins SJ, Di Achille G, Hynek BM (2011) The volcanic history of Mars: high-resolution crater-based studies of the calderas of 20 volcanoes. Icarus 211:1179–1203CrossRefGoogle Scholar
  36. Schiavone MM, Suárez GM (2009) Globulinella halloyi (Pottiaceae), a new species from Argentina. Bryologist 112:584–588CrossRefGoogle Scholar
  37. Schmidt D (1999) Das Extremklima der nordchilenischen Hochatacama unter besonderer Berücksichtigung der Höhengradienten. Dresdener Geographische Beiträge 4:1–122Google Scholar
  38. Schmidt SK, Nemergut DR, Miller AE, Freeman KR, King AJ, Seimon A (2009) Microbial activity and diversity during extreme freeze-thaw cycles in periglacial soils, 5400 m elevation, Cordillera Vilcanota, Perú. Extremophiles 13:807–816CrossRefPubMedGoogle Scholar
  39. Schmidt SK, Naff C, Lynch R (2012) Fungal communities at the edge: ecological lessons from high alpine fungi. Fungal Ecol 5:443–452CrossRefGoogle Scholar
  40. Schmidt SK, Darcy JL, Sommers P, Gunawan E, Knelman JE, Jager K (2017a) Freeze–thaw revival of rotifers and algae in a desiccated, high elevation (5500 meters) microbial mat, high Andes, Perú. Extremophiles 21:573–580CrossRefPubMedGoogle Scholar
  41. Schmidt SK, Vimercati L, Darcy JL, Arán P, Gendron EMS, Solon A, Porazinska D, Dorador C (2017b) A Naganishia in high places: functioning populations or dormant cells from the atmosphere? Mycology 8:153–163CrossRefPubMedPubMedCentralGoogle Scholar
  42. Solon AJ, Vimercati L, Darcy JL, Arán P, Porazinska D, Dorador C, Farias ME, Schmidt SK (2018) Microbial communities of high-elevation fumaroles, penitentes and dry tephra “soils” of the Puna de Atacama Volcanic Zone. Microb Ecol. PubMedCrossRefGoogle Scholar
  43. Tebo BM, Davis RE, Anitori RP, Connell LB, Schiffman P, Schiffman H (2015) Microbial communities in dark oligotrophic volcanic ice cave ecosystems of Mt. Erebus, Antarctica. Front Microbiol 6:179. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Vimercati L, Hamsher S, Schubert Z, Schmidt SK (2016) Growth of a high-elevation Cryptococcus sp. during extreme freeze-thaw cycles. Extremophiles 20:579–588CrossRefPubMedGoogle Scholar
  45. Vishniac HS (1985) Cryptococcus friedmannii, a new species of yeast from the Antarctic. Mycologia 77:149–153CrossRefPubMedGoogle Scholar
  46. Vitry C (2016) Contribución al estudio de caminos se Sitios Arqueológicos de Altura. Volcán Llullaillaco (6739 m). Museo de Arqueologia de Alta Montana Salta, ArgentinaGoogle Scholar
  47. Watson JM, Cardenas MP, Flores AR, Macaya J, Jímenez H, Barría J (2013) Viola gelida, una nueva especie rosulada, rara y vulnerable del sector altoandino de la Región de Atacama, Chile. Gayana Bot. 70:390–394CrossRefGoogle Scholar
  48. Weber CF, King GM (2010) Distribution and diversity of carbon monoxide-oxidizing bacteria and bulk bacterial communities across a successional gradient on a Hawaiian volcanic deposit. Environ Microbiol 12:1855–1867CrossRefPubMedGoogle Scholar
  49. Wilson AS, Brown EL, Villa C, Lynnerup N, Healey A, Ceruti MC, Reinhard J, Previgliano CH, Araoz FA, Gonzalez Diez J, Taylor T (2013) Archaeological, radiological, and biological evidence offer insight into Inca child sacrifice. Proc Natl Acad Sci USA 110:13322–13327CrossRefPubMedGoogle Scholar
  50. Yang M, Yao T, Gou X, Koike T, He Y (2002) The soil moisture distribution, thawing–freezing processes and their effects on the seasonal transition on the Qinghai-Xizang (Tibetan) plateau. J Asian Earth Sci 21:457–465CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • S. K. Schmidt
    • 1
    Email author
  • E. M. S. Gendron
    • 1
    • 2
  • K. Vincent
    • 1
  • A. J. Solon
    • 1
  • P. Sommers
    • 1
  • Z. R. Schubert
    • 1
    • 2
  • L. Vimercati
    • 1
  • D. L. Porazinska
    • 1
  • J. L. Darcy
    • 1
  • P. Sowell
    • 1
  1. 1.Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderUSA
  2. 2.Molecular, Cellular, and Developmental Biology DepartmentUniversity of ColoradoBoulderUSA

Personalised recommendations