Advertisement

Description of Wenzhouxiangella salilacus sp. nov., a moderate halophilic bacterium isolated from a salt lake in Xinjiang Province, China

  • Shuai-Bo Han
  • Xin-Jun Hou
  • Yang-Huan Yu
  • Zhao Ju
  • Ran Zhang
  • Rui-Jun Wang
  • Yang-Hui Ye
  • Yan-Hu Ren
  • Wei-Yan ZhangEmail author
  • Min WuEmail author
Original Paper
  • 48 Downloads

Abstract

A Gram-stain negative, non-motile, strictly aerobic and rod-shaped bacterium, designated as 15181T, was isolated from a salt lake in Xinjiang Province, China. Strain 15181T was able to grow at 10–40 °C (optimum 37 °C), pH 6.0–8.5 (optimum 7.0) and with 1–14% NaCl (optimum 4%, w/v). According to phylogenetic analysis based on 16S rRNA gene sequences, strain 15181T was assigned to the genus Wenzhouxiangella with high 16S rRNA gene sequence similarity of 97.4% to Wenzhouxiangella sediminis XDB06T, followed by Wenzhouxiangella marina KCTC 42284T (95.9%). Strain 15181T exhibited ANI values of 80.0% and 72.0% to W. sediminis XDB06T and W. marina KCTC 42284T, respectively. The in silico DDH analysis revealed that strain 15181T shared 19.1% and 18.7% DNA relatedness with W. sediminis XDB06T and W. marina KCTC 42284T, respectively. Chemotaxonomic analysis showed that the sole respiratory quinone was ubiquinone-8, the major fatty acids included iso-C15:0, iso-C16:0 and summed feature 9 (C16:0 10-methyl and/or iso-C17:1ω9c). The major polar lipids included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two unidentified glycolipids, two unidentified phospholipids, two unidentified aminophospholipids and an unidentified lipid. On the basis of phenotypic, genotypic and chemotaxonomic characteristics presented in this study, strain 15181T is concluded to represent a novel species in the genus Wenzhouxiangella, for which the name Wenzhouxiangella salilacus sp. nov. is proposed. The type strain is 15181T (=KCTC 62172T=MCCC 1K03442T).

Keywords

Wenzhouxiangella salilacus Salt lake Polyphasic taxonomy 

Abbreviations

ANI

Average nucleotide identity

DDH

DNA–DNA hybridization

Notes

Acknowledgements

The authors are thankful to College of Marine Science, Shandong University at Weihai, for their provision of W. sediminis XDB06T. This work was supported by Grants from the Science & Technology Basic Resources Investigation Program of China (2017FY100300) and the Natural Science Foundation of Zhejiang Province of China (LQ18C010001).

Author’s contribution

W.Y.Z. and M.W. conceived the study. S.B.H., X.J.H., Y.H.Y. and Z.J. performed the research. R.Z., R.J.W. and Y.H.Y. analyzed data. S.B.H. and Y.H.R. wrote the paper. All authors read and approved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10482_2018_1216_MOESM1_ESM.pdf (610 kb)
Supplementary material 1 (PDF 610 kb)

References

  1. Claus D (1992) A standardized gram staining procedure. World J Microbiol Biotechnol 8:451–452CrossRefGoogle Scholar
  2. Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679CrossRefPubMedCentralGoogle Scholar
  3. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefGoogle Scholar
  4. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  5. Guo LY, Dunlap CA, Rooney AP, Chen GJ, Du ZJ (2016) Wenzhouxiangella sediminis sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 66:4575–4579CrossRefGoogle Scholar
  6. Han SB, SuY HuJ, Wang RJ, Sun C et al (2016) Terasakiella brassicae sp. nov., isolated from the wastewater of a pickle-processing factory, and emended descriptions of Terasakiella pusilla and the genus Terasakiella. Int J Syst Evol Microbiol 66:1807–1812CrossRefGoogle Scholar
  7. Huo YY, Xu XW, Cui HL, Wu M (2010) Gracilibacillus ureilyticus sp nov., a halotolerant bacterium from a saline–alkaline soil. Int J Syst Evol Microbiol 60:1383–1386CrossRefGoogle Scholar
  8. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721CrossRefGoogle Scholar
  9. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide-sequences. J Mol Evol 16:111–120CrossRefGoogle Scholar
  10. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  11. Kuykendall LD, Roy MA, Oneill JJ, Devine TE (1988) Fatty-acids, antibiotic-resistance, and deoxyribonucleic-acid homology groups of Bradyrhizobium-japonicum. Int J Syst Bacteriol 38:358–361CrossRefGoogle Scholar
  12. Lee I, Kim YO, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103CrossRefGoogle Scholar
  13. Mata JA, Martinez-Canovas J, Quesada E, Bejar V (2002) A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25:360–375CrossRefGoogle Scholar
  14. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60CrossRefGoogle Scholar
  15. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:D206–D214CrossRefGoogle Scholar
  16. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055CrossRefPubMedCentralGoogle Scholar
  17. Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131CrossRefGoogle Scholar
  18. Saitou N, Nei M (1987) The neighbor-joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  19. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM et al (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19:1117–1123CrossRefPubMedCentralGoogle Scholar
  20. Sun C, Pan J, Zhang XQ, Su Y, Wu M (2015) Pseudoroseovarius zhejiangensis gen. nov., sp nov., a novel alpha-proteobacterium isolated from the chemical wastewater, and reclassification of Roseovarius crassostreae as Pseudoroseovarius crassostreae comb. nov., Roseovarius sediminilitoris as Pseudoroseovarius sediminilitoris comb. nov and Roseovarius halocynthiae as Pseudoroseovarius halocynthiae comb. nov. Antonie Van Leeuwenhoek 108:291–299CrossRefGoogle Scholar
  21. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal-W—improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedCentralGoogle Scholar
  22. Wang GH, Tang MX, Li T, Dai SK, Wu HL et al (2015) Wenzhouxiangella marina gen. nov, sp. nov, a marine bacterium from the culture broth of Picochlorum sp. 122, and proposal of Wenzhouxiangellaceae fam. nov. in the order Chromatiales. Antonie Van Leeuwenhoek 107:1625–1632CrossRefGoogle Scholar
  23. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al (1987) Report of the ad-hoc-committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  24. Xu XW, Wu YH, Zhou Z, Wang CS, Zhou YG et al (2007) Halomonas saccharevitans sp nov., Halomonas arcis sp nov and Halomonas subterranea sp nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 57:1619–1624CrossRefGoogle Scholar
  25. Zhang WY, Yuan Y, Su DQ, He XP, Han SB et al (2018) Gallaecimonas mangrovi sp. nov., a novel bacterium isolated from mangrove sediment. Antonie Van Leeuwenhoek 111:1855–1862CrossRefGoogle Scholar
  26. Zhu XF (2011) Modern experimental technique of microbiology. Zhejiang University Press, Hangzhou (English translation) Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Shuai-Bo Han
    • 1
  • Xin-Jun Hou
    • 1
  • Yang-Huan Yu
    • 1
  • Zhao Ju
    • 1
  • Ran Zhang
    • 1
  • Rui-Jun Wang
    • 2
  • Yang-Hui Ye
    • 2
  • Yan-Hu Ren
    • 2
  • Wei-Yan Zhang
    • 3
    Email author
  • Min Wu
    • 1
    Email author
  1. 1.College of Life SciencesZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.Ocean CollegeZhejiang UniversityZhoushanPeople’s Republic of China
  3. 3.College of Food and Pharmaceutical SciencesNingbo UniversityNingboPeople’s Republic of China

Personalised recommendations