Advertisement

Sphingobium pinisoli sp. nov., isolated from the rhizosphere soil of a Korean native pine tree

  • Jae-Chan Lee
  • Jun-Soo Song
  • Kyung-Sook Whang
Original Paper

Abstract

A Gram-stain negative, aromatic compound degrading bacterium, designated strain ASA28T, was isolated from the rhizosphere soil of a pine tree at Anmyon island, Taean in Korea. Strain ASA28T was found to be strictly aerobic, non-motile, short rods which can grow at 15–28 °C (optimum, 25–28 °C), at pH 5.0–11.0 (optimum, pH 7.0) and at salinities of 0–1.0% (w/v) NaCl (optimum, 0% NaCl). Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain ASA28T belongs to the genus Sphingobium, showing high sequence similarity to Sphingobium scionense WP01T (97.8%), Sphingobium vermicocomposti VC-230T (96.8%), Sphingobium yanoikuyae ATCC 51230T (96.5%) and Sphingobium herbicidovorans MHT (95.6%). The predominant ubiquinone and polyamine components were identified as Q-10 and spermidine, respectively. The major fatty acids were identified as C18:1ω7c, C16:0, C14:0 2-OH and C16:1ω7c and/or C15:0 iso 2-OH. The major polar lipids were identified as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylcholine, sphingoglycolipid, phosphoglycolipid, four unidentified aminophospholipids, an unidentified aminolipid, two unidentified phospholipids and six unidentified lipids. The DNA G+C content of this novel isolate was determined to be 63.0 mol%. DNA–DNA relatedness between strain ASA28T and S. herbicidovorans KCTC 2939T, S. vermicocomposti DSM 21299T and S. scionense DSM 19371T was determined to be 32 ± 5%, 30 ± 4% and 25 ± 5%, respectively. On the basis of the phylogenetic, phenotypic and chemotaxonomic analyses in this study, strain ASA28T is considered to represent a novel species of the genus Sphingobium, for which the name Sphingobium pinisoli sp. nov. is proposed. The type strain is ASA28T (= KACC 18700T = NBRC 112246T).

Keywords

Sphingobium pinisoli sp. nov. Forest soil Pine rhizosphere Taxonomy 

Notes

Funding

This work was carried out with the support of ‘Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01287601)’ Rural Development Administration, Republic of Korea.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10482_2018_1215_MOESM1_ESM.pdf (735 kb)
Supplementary material 1 (PDF 735 kb)

References

  1. Busse HJ, Bunka S, Hensel A, Lubitz W (1997) Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708CrossRefGoogle Scholar
  2. Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354PubMedPubMedCentralGoogle Scholar
  3. DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689CrossRefPubMedGoogle Scholar
  4. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229CrossRefGoogle Scholar
  5. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedGoogle Scholar
  6. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefPubMedGoogle Scholar
  7. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  8. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  9. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefPubMedGoogle Scholar
  10. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar
  11. Liang Q, Lloyd-Jones G (2010) Sphingobium scionense sp. nov., an aromatic hydrocarbon-degrading bacterium isolated from contaminated sawmill soil. Int J Syst Evol Microbiol 60:413–416CrossRefPubMedGoogle Scholar
  12. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  13. Murray RGE, Doetsch RN, Robinow F (1994) Determinative and cytological light microscopy. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 21–41Google Scholar
  14. Parte AC (2018) LPSN–List of Prokaryotic names with Standing in Nomenclature (bacter.net), 20 years on. Int J Syst Evol Microbiol 68:1825–1829CrossRefPubMedGoogle Scholar
  15. Rosselló-Móra R, Trujillo ME, Sutcliffe IC (2017) Introducing a digital protologue: a timely move towards a database-driven systematics of archaea and bacteria. Antonie Van Leeuwenhoek 110:455–456CrossRefPubMedGoogle Scholar
  16. Saito H, Miura KI (1963) Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629CrossRefPubMedGoogle Scholar
  17. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  18. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc, NewarkGoogle Scholar
  19. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 607–654Google Scholar
  20. Taibi G, Schiavo MR, Gueli MC, Calanni Rindina P, Muratore R, Nicotra CMA (2000) Rapid and simultaneous highperformance liquid chromatography assay of polyamines and monoacetylpolyamines in biological specimens. J Chromatogr B Biomed Sci Appl 745:431–437CrossRefPubMedGoogle Scholar
  21. Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417CrossRefPubMedGoogle Scholar
  22. Tomaoka J, Komagata K (1984) Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128CrossRefGoogle Scholar
  23. Vaz-Moreira I, Faria C, Lopes AR, Svensson L, Falsen E, Moore ERB, Silva Ferreira AC, Nunes OC, Manaia CM (2009) Sphingobium vermicomposti sp. nov., isolated from vermicompost. Int J Syst Evol Microbiol 59:3145–3149CrossRefPubMedGoogle Scholar
  24. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  25. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T, Yamamoto H (1990) Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 34:99–119CrossRefPubMedGoogle Scholar
  26. Yabuuchi E, Kosako Y, Naka T, Suzuki S, Yano I (1999) Proposal of Sphingomonas suberifaciens (van Bruggen, Jochimsen and Brown 1990) comb. nov., Sphingomonas natatoria (Sly 1985) comb. nov., Sphingomonas ursincola (Yurkov et al., 1997) comb. nov., and emendation of the genus Sphingomonas. Microbiol Immunol 43:339–349CrossRefPubMedGoogle Scholar
  27. Yabuuchi E, Kosako Y, Fujiwara N, Naka T, Matsunaga I, Ogura H, Kobayashi K et al (2002) Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. Int J Syst Evol Microbiol 52:1485–1496PubMedGoogle Scholar
  28. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617CrossRefPubMedPubMedCentralGoogle Scholar
  29. Young CC, Arun AB, Kämpfer P, Busse HJ, Lai WA, Chen WM, Shen FT, Rekha PD (2008) Sphingobium rhizovicinum sp. nov., isolated from rhizosphere soil of Fortunella hindsii (Champ. ex Benth.) Swingle. Int J Syst Evol Microbiol 58:1801–1806CrossRefPubMedGoogle Scholar
  30. Zhu L, Xin K, Chen C, Li C, Si M, Zhao L, Shi X, Zhang L, Shen X (2015) Sphingobium endophyticus sp. nov., isolated from the root of Hylomecon japonica. Antonie Van Leeuwenhoek 107:1001–1008CrossRefPubMedGoogle Scholar
  31. Zipper C, Nickel K, Angst W, Kohler HPE (1996) Complete microbial degradation of both enantiomers of the chiral herbicide mecoprop [(RS)-2-(4-chloro-2-methylphenoxy)propionic acid] in an enantioselective manner by Sphingomonas herbicidovorans sp. nov. Appl Environ Microbiol 62:4318–4322PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jae-Chan Lee
    • 1
    • 2
  • Jun-Soo Song
    • 2
  • Kyung-Sook Whang
    • 1
    • 2
  1. 1.Institute of Microbial Ecology and ResourcesMokwon UniversityDaejeonRepublic of Korea
  2. 2.Department of Microbial and Nano Materials, College of Science and TechnologyMokwon UniversityDaejeonRepublic of Korea

Personalised recommendations