Advertisement

Ethanol stress responses of Kluyveromyces marxianus CCT 7735 revealed by proteomic and metabolomic analyses

  • Mariana Caroline Tocantins Alvim
  • Camilo Elber Vital
  • Edvaldo Barros
  • Nívea Moreira Vieira
  • Fernando Augusto da Silveira
  • Thércia Rocha Balbino
  • Raphael Hermano Santos Diniz
  • Amanda Fernandes Brito
  • Denise Mara Soares Bazzolli
  • Humberto Josué de Oliveira Ramos
  • Wendel Batista da SilveiraEmail author
Original Paper
  • 69 Downloads

Abstract

Kluyveromyces marxianus CCT 7735 offers advantages to ethanol production over Saccharomyces cerevisiae, including thermotolerance and the ability to convert lactose to ethanol. However, its growth is impaired at high ethanol concentrations. Herein we report on the protein and intracellular metabolite profiles of K. marxianus at 1 and 4 h under ethanol exposure. The concentration of some amino acids, trehalose and ergosterol were also measured. We observed that proteins and metabolites from carbon pathways and translation were less abundant, mainly at 4 h of ethanol stress. Nevertheless, the concentration of some amino acids and trehalose increased at 8 and 12 h under ethanol stress, indicating an adaptive response. Moreover, our results show that the abundance of proteins and metabolites related to the oxidative stresses responses increased. The results obtained in this study provide insights into understanding the physiological changes in K. marxianus under ethanol stress, indicating possible targets for ethanol tolerant strains construction.

Keywords

Amino acids Trehalose Ergosterol Membrane permeability Lactose 

Notes

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. Besides, this study was supported by the Brazilian Agencies Foundation for Research Support of the State of Minas Gerais (FAPEMIG) as well as National Science and Technology Development Council (CNPq). The authors thank the Center for Analysis of Biomolecules at Universidade Federal de Viçosa for the equipment’s and software’s used in this study.

Author’s contribution

Considering the involvement, we believe that it is appropriate to include the following authors in the manuscript: MCTA, CEV, EB, NMV, FAS, TRB, RHSD, AFB, DMSB, HJOR, WBS. Conceived of or designed study: WBS, HJOR and MCTA. Performed research: MCTA, CEV, EB, NMV, FAS, TRB, RHSD and AFB. Analyzed data and discussion relative: WBS, MCTA, CEV and EB. Wrote and revised the manuscript: WBS, FAS, DMSB and MCTA.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10482_2018_1214_MOESM1_ESM.docx (750 kb)
Supplementary material 1 (DOCX 750 kb)

References

  1. Aguilera F, Peinado RA, Millán C, Ortega JM, Mauricio JC (2006) Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int J Food Microbiol 110:34–42CrossRefGoogle Scholar
  2. Alexandre H, Ansanay-Galeote V, Dequin S, Blondin B (2001) Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett 498(1):98–103CrossRefGoogle Scholar
  3. Billard P, Ménart S, Fleer R, Bolotin-Fukuhara M (1995) Isolation and characterization of the gene encoding xylose reductase from Kluyveromyces lactis. Gene 162(1):93–97CrossRefGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  5. Canelas AB, Ras C, Pierick AT, Van Dam JC, Heijnen HJ, Van Gulik WM (2008) Leakage-free rapid quenching technique for yeast metabolomics. Metabolomics 4:226–239CrossRefGoogle Scholar
  6. Chandler M, Stanley GA, Rogers P, Chambers P (2004) A genomic approach to defining the ethanol stress response in the yeast Saccharomyces cerevisiae. Ann Microbiol 54:427–454Google Scholar
  7. Chen Z, Zheng Z, Yi C, Wang F, Niu Y, Li H (2016) Intracellular metabolic changes in Saccharomyces cerevisiae and promotion of ethanol tolerance during the bioethanol fermentation process. RSC Adv 6:105046–105055CrossRefGoogle Scholar
  8. Cheng Y, Du Z, Zhu H, Guo X, He X (2016) Protective effects of arginine on Saccharomyces cerevisiae against ethanol stress. Sci Rep 6:31311CrossRefGoogle Scholar
  9. Choudhary J, Singh S, Nain L (2016) Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass. Electron J Biotechnol 21:82–92CrossRefGoogle Scholar
  10. Costa DA, Souza CJA, Costa PS, Rodrigues MQRB, Santos AF, Lopes MR et al (2014) Physiological characterization of thermotolerant yeast for cellulosic ethanol production. Appl Microbiol Biotechnol 98:3829–3840CrossRefGoogle Scholar
  11. Cox HD, Chao CK, Patel SA, Thompson CM (2008) Efficient digestion and mass spectral analysis of vesicular glutamate transporter 1: a recombinant membrane protein expressed in yeast. J Proteome Res 7(2):570–578CrossRefGoogle Scholar
  12. Cuadros-Inostroza A, Caldana C, Redestig H, Lisec J, Pena-Cortes H, Willmitzer L et al (2009) TargetSearch—a bioconductor package for the efficient pre-processing of GC–MS metabolite profiling data. BMC Bioinform 10:428CrossRefGoogle Scholar
  13. da Silveira FA, Diniz RHS, Sampaio GMS et al (2018) Sugar transport systems in Kluyveromyces marxianus CCT 7735. Antonie van Leeuwenhoek Int J Gen Mol Microbiol.  https://doi.org/10.1007/s10482-018-1143-4 Google Scholar
  14. de Bruijne AW, Schuddemat J, van den Broek PJA, van Steveninck J (1988) Regulation of sugar transport systems of Kluyveromyces marxianus: the role of carbohydrates and their catabolism. Biochim Biophys Acta 939:569–576CrossRefGoogle Scholar
  15. Dinh TN, Nagahisa K, Yoshikawa K, Hirasawa T, Furusawa C, Shimizu H (2009) Analysis of adaptation to high ethanol concentration in Saccharomyces cerevisiae using DNA microarray. Bioprocess Biosyst 32(5):681–688CrossRefGoogle Scholar
  16. Diniz RH, Silveira WB, Fietto LG, Passos FM (2012) The high fermentative metabolism of Kluyveromyces marxianus UFV-3 relies on the increased expression of key lactose metabolic enzymes. Antonie van Leeuwenhoek 101(3):541–550CrossRefGoogle Scholar
  17. Diniz R, Rodrigues M, Fietto L, Passos F, Silveira W (2014) Optimizing and validating the production of ethanol from cheese whey permeate by Kluyveromyces marxianus UFV-3. Biocatal Agric Biotechnol 2:111–117CrossRefGoogle Scholar
  18. Diniz RHS, Villada JC, Alvim MCT, Vidigal PMP, Vieira NM, Lamas-Maceiras M et al (2017) Transcriptome analysis of the thermotolerant yeast Kluyveromyces marxianus CCT 7735 under ethanol stress. Appl Microbiol Biotechnol 101(18):6969–6980CrossRefGoogle Scholar
  19. Doğan A, Demirci S, Aytekin AO, Şahin F (2014) Improvements of tolerance to stress conditions by genetic engineering in Saccharomyces cerevisiae during ethanol production. Appl Biochem Biotechnol 174(1):28–42CrossRefGoogle Scholar
  20. Du X, Takagi H (2007) N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. Appl Microbiol Biotechnol 75(6):1343–1351CrossRefGoogle Scholar
  21. Ferreira T, Mason AB, Slayman CW (2001) The yeast Pma1 proton pump: a model for understanding the biogenesis of plasma membrane proteins. J Biol Chem 276(32):29613–29616CrossRefGoogle Scholar
  22. Ferreira P, Silveira F, Santos R, Genier H, Diniz R, Ribeiro JI et al (2015) Optimizing ethanol production by thermotolerant Kluyveromyces marxianus CCT 7735 in a mixture of sugarcane bagasse and ricotta whey. Food Sci Biotechnol 24(4):1421–1427CrossRefGoogle Scholar
  23. Fujita K, Matsuyama A, Kobayashi Y, Iwahashi H (2006) The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols. FEMS Yeast Res 6:744–750CrossRefGoogle Scholar
  24. GE Healthcare (2004) Colloidal Coomassie staining procedure. In: 2-D Electrophoresis. GE Healthcare, United Kingdom, pp 1–159Google Scholar
  25. Hashim Z, Fukusaki E (2016) Metabolomics-based prediction models of yeast strains for screening of metabolites contributing to ethanol stress tolerance. In: International conference on chemical engineering and bioprocess engineering - Earth and environmental science, vol 36Google Scholar
  26. Henderson CM, Block DE (2014) Examining the role of membrane lipid composition in determining the ethanol tolerance of Saccharomyces cerevisiae. Appl Environ Microbiol 80(10):2966–2972CrossRefGoogle Scholar
  27. Hill CB, Roessner U (2013) Metabolic profiling of plants by GC–MS. In: The handbook of plant metabolomics. First Ed. Wiley-VCH Verlag GmbH & Co. KGaA, pp 3–23Google Scholar
  28. Hirasawa T, Yoshikawa K, Nakakura Y, Nagahisa K, Furusawa C, Katakura Y et al (2007) Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. J Biotechnol 131:34–44CrossRefGoogle Scholar
  29. Hong ME, Lee KS, Yu BJ, Sung YJ, Park SM, Koo HM et al (2010) Identification of gene targets eliciting improved alcohol tolerance in Saccharomyces cerevisiae through inverse metabolic engineering. J Biotechnol 149(1–2):52–59CrossRefGoogle Scholar
  30. International Energy Agency (2016) World energy outlook 2016. In World energy outlook 2016 (eds). International Energy Agency: Paris, p 684Google Scholar
  31. Jelen P (2009) Dried whey, whey proteins, lactose and lactose derivative products. In: Tamime AY (ed) Dairy powders and concentrated products. Wiley-Blackwell, Oxford, pp 255–267CrossRefGoogle Scholar
  32. Kaino T, Takagi H (2008) Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses. Appl Microbiol Biotechnol 79:273–283CrossRefGoogle Scholar
  33. Kasavi C, Eraslan S, Oner ET, Kirdar B (2016) An integrative analysis of transcriptomic response of ethanol tolerant strains to ethanol in Saccharomyces cerevisiae. Mol BioSyst 12(2):464–476CrossRefGoogle Scholar
  34. Kim S, Kim J, Song JH, Jung YH, Choi IS, Choi W et al (2016) Elucidation of ethanol tolerance mechanisms in Saccharomyces cerevisiae by global metabolite profiling. Biotechnol J 11(9):1221–1229CrossRefGoogle Scholar
  35. Lahtvee PJ, Kumar R, Hallström BM, Nielsen J (2016) Adaptation to different types of stress converge on mitochondrial metabolism. Mol Biol Cell 27(15):2505–2514CrossRefGoogle Scholar
  36. Lane MM, Burke N, Karreman R, Wolfe KH, O’byrne CP, Morrissey JP (2011) Physiological and metabolic diversity in the yeast Kluyveromyces marxianus. Antonie van Leeuwenhoek 100(4):507–519CrossRefGoogle Scholar
  37. Lee Y, Jin Y, Cha Y, Seo J (2017) Bioethanol production from cellulosic hydrolysates by engineered industrial Saccharomyces cerevisiae. Bioresour Technol 228:355–361CrossRefGoogle Scholar
  38. Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1(1):387–396CrossRefGoogle Scholar
  39. Ma M, Liu ZL (2010) Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 87(3):829–845CrossRefGoogle Scholar
  40. Mahmud SA, Hirasawa T, Furusawa C, Yoshikawa K, Shimizu H (2012) Understanding the mechanism of heat stress tolerance caused by high trehalose accumulation in Saccharomyces cerevisiae using DNA microarray. J Biosci Bioeng 113:526–528CrossRefGoogle Scholar
  41. Marza E, Camougrand N, Manon S (2002) Bax expression protects yeast plasma membrane against ethanol-induced permeabilization. FEBS Lett 521:47–52CrossRefGoogle Scholar
  42. Morales M, Quintero J, Conejeros R, Aroca G (2015) Life cycle assessment of lignocellulosic bioethanol: environmental impacts and energy balance. Renew Sustain Energy Rev 42:1349–1361CrossRefGoogle Scholar
  43. Morano KA, Grant CM, Moye-Rowley WS (2012) The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190:1157–1195CrossRefGoogle Scholar
  44. Moreno-García J, García-Martínez T, Moreno J, Millán MC, Mauricio JC (2014) A proteomic and metabolomic approach for understanding the role of the flor yeast mitochondria in the velum formation. Int J Food Microbiol 172:21–29CrossRefGoogle Scholar
  45. Navarro-Tapia E, Nana RK, Querol A, Pérez-Torrado R (2016) Ethanol cellular defense induce unfolded protein response in yeast. Front Microbiol 18(7):189Google Scholar
  46. Odat O, Matta S, Khalil H, Kampranis SC, Pfau R, Tsichlis PN, Makris AM (2007) Old yellow enzymes, highly homologous FMN oxidoreductases with modulating roles in oxidative stress and programmed cell death in yeast. J Biol Chem 282(49):36010–36023CrossRefGoogle Scholar
  47. Ohta E, Nakayama Y, Mukai Y, Bamba T, Fukusaki E (2016) Metabolomic approach for improving ethanol stress tolerance in Saccharomyces cerevisiae. J Biosci Bioeng 121(4):399–405CrossRefGoogle Scholar
  48. Piper PW (1995) The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol Lett 134:121–127CrossRefGoogle Scholar
  49. Rosa MF, Sá-Correia I (1992) Ethanol tolerance and activity of plasma membrane ATPase in Kluyveromyces marxianus and Saccharomyces cerevisiae. Enzyme Microb Technol 14:23–27CrossRefGoogle Scholar
  50. Rossignol T, Kobi D, Jacquet-Gutfreund L, Blondin B (2009) The proteome of a wine yeast strain during fermentation, correlation with the transcriptome. J Appl Microbiol 107:47–55CrossRefGoogle Scholar
  51. Rossouw D, Dool AH, Jacobson D, Bauer FF (2010) Comparative transcriptomic and proteomic profiling of industrial wine yeast strains. Appl Environ Microbiol 76(12):3911–3923CrossRefGoogle Scholar
  52. Sampedro JG, Nájera H, Uribe-Carvajal S, Ruiz-Granados YG (2014) Mapping the ATP binding site in the plasma membrane H(+)-ATPase from Kluyveromyces lactis. J Fluoresc 24(6):1849–1859CrossRefGoogle Scholar
  53. Santos RM, Nogueira FC, Brasil AA, Carvalho PC, Leprevost FV, Domont GB, Eleutherio EC (2017) Quantitative proteomic analysis of the Saccharomyces cerevisiae industrial strains CAT-1 and PE-2. J Proteom 151:114–121CrossRefGoogle Scholar
  54. Savaliya ML, Dhorajiya BD, Dholakiya BZ (2015) Recent advancement in production of liquid biofuels from renewable resources: a review. Res Chem Intermed 41:475–509CrossRefGoogle Scholar
  55. Schabort DTWP, Letebele PK, Steyn L, Kilian SG, du Preez JC (2016) Differential RNA-seq, multi-network analysis and metabolic regulation analysis of Kluyveromyces marxianus reveals a compartmentalised response to xylose. PLoS ONE 11(6):e0156242CrossRefGoogle Scholar
  56. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2007) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1(6):2856–2860CrossRefGoogle Scholar
  57. Silveira WB, Passos FJV, Mantovani HC, Passos FML (2005) Ethanol production from cheese whey permeate by Kluyveromyces marxianus UFV-3: a flux analysis of oxido-reductive metabolism as a function of lactose concentration and oxygen levels. Enzyme Microb Technol 36:930–936CrossRefGoogle Scholar
  58. Silveira WB, Diniz RHS, Cerdan ME, Gonzalez-Siso MI, Souza RA, Vidigal PMP et al (2014) Genomic sequence of the yeast Kluyveromyces marxianus CCT 7735 (UFV-3), a highly lactose-fermenting yeast isolated from the Brazilian dairy industry. Genome Announc 2:e01136-14CrossRefGoogle Scholar
  59. Sossna R (2014) The world of whey got together: 7th international Whey conference. Int Dairy Magaz 10:22–23Google Scholar
  60. Stanley D, Bandara A, Fraser S, Chambers P, Stanley G (2010) The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 109(1):13–24Google Scholar
  61. Thangavelu SK, Ahmed AS, Ani FN (2016) Review on bioethanol as alternative fuel for spark ignition engines. Renew Sustain Energy Rev 56:820–835CrossRefGoogle Scholar
  62. Trabalzini L, Paffetti A, Scaloni A, Talamo F, Ferro E, Coratza G et al (2003) Proteomic response to physiological fermentation stresses in a wild-type wine strain of Saccharomyces cerevisiae. Biochem J 370:35–46CrossRefGoogle Scholar
  63. Trotter EW, Collinson EJ, Dawes IW, Grant CM (2006) Old yellow enzymes protect against acrolein toxicity in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 72(7):4885–4892CrossRefGoogle Scholar
  64. Vanegas JM, Contreras MF, Faller R, Longo ML (2012) Role of unsaturated lipid and ergosterol in ethanol tolerance of model yeast biomembranes. Biophys J 102(3):507–516CrossRefGoogle Scholar
  65. Venditti R, Wilson C, Matteis MA (2014) Exiting the ER: what we know and what we don’t. Trends Cell Biol 24:9–18CrossRefGoogle Scholar
  66. Villas-Bôas SG, Hojer-Pedersen J, Akesson M, Smedsgaard J, Nielsen J (2005) Global metabolite analysis of yeast: evaluation of sample preparation methods. Yeast 22:1155–1169CrossRefGoogle Scholar
  67. Zhao S, Zhao X, Zou H, Fu J, Du G, Zhou J, Chen J (2014) Comparative proteomic analysis of Saccharomyces cerevisiae under different nitrogen sources. J Proteom 101:102–112CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mariana Caroline Tocantins Alvim
    • 1
  • Camilo Elber Vital
    • 2
  • Edvaldo Barros
    • 2
  • Nívea Moreira Vieira
    • 1
    • 2
  • Fernando Augusto da Silveira
    • 1
  • Thércia Rocha Balbino
    • 1
  • Raphael Hermano Santos Diniz
    • 1
    • 3
  • Amanda Fernandes Brito
    • 1
  • Denise Mara Soares Bazzolli
    • 1
  • Humberto Josué de Oliveira Ramos
    • 2
  • Wendel Batista da Silveira
    • 1
    Email author
  1. 1.Laboratory of Microbial Physiology, Department of MicrobiologyUniversidade Federal de ViçosaViçosaBrazil
  2. 2.Center for Analysis of Biomolecules, Center for Biological and Health SciencesUniversidade Federal de ViçosaViçosaBrazil
  3. 3.Instituto Federal de EducaçãoCiência e Tecnologia de Minas Gerais - Campus Ouro PretoOuro PretoBrazil

Personalised recommendations