Lottiidibacillus patelloidae gen. nov., sp. nov., isolated from the intestinal tract of a marine limpet and reclassification of Bacillus taeanensis as Maribacillus taeanensis gen. nov., comb. nov.

  • Renju Liu
  • Zhaobin Huang
  • Chunming Dong
  • Zongze Shao
Original Paper


A taxonomic study was carried out on strain SA5d-4T, which was isolated from a marine limpet (Patelloida saccharina lanx [Reeve, 1855]) collected from intertidal rocks in Xiamen, China. Strain SA5d-4T was aerobic, Gram-positive, lacked flagellum, non-motile, filamentous, formed a slightly-yellowish colony, and non-sporulating. The strain grew optimally at 28 °C, at pH values 7.0–8.0, and in the presence of 1–2% (w/v) sodium chloride. The major cellular fatty acids identified were iso-C15:0, iso-C17:0ω10c, and iso-C17:0. The dominated respiratory quinone was menaquinone-7. The major phospholipids were identified as diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylglycerol. The genomic DNA G + C content was 35.3 mol%, calculated from a draft genome sequence. Phylogenetic analysis based on the full-length 16S rRNA gene sequence showed that strain SA5d-4T belongs to a new genus within the family Bacillaceae, and this gene shares 95.6% similarity with that from Bacillus taeanensis BH030017T, 95.2% with Bacillus algicola KMM 3737T, 95.1% with Bacillus alkalinitrilicus ANL-iso4T, 94.9% with Bacillus hwajinpoensis SW-72T, and 94.6% with Anaerobacillus alkalidiazotrophicus MS6T. Whole genome phylogenetic analyses indicated that strain SA5d-4T formed a monophyletic branch with B. taeanensis BH030017T. The average nucleotide identity between strain SA5d-4T and B. taeanensis BH030017T was 69.6%. Based on polyphasic taxonomic characteristics, strain SA5d-4T represents a novel species of a new genus, for which the name Lottiidibacillus patelloidae gen. nov., sp. nov., is proposed with the type strain SA5d-4T (= MCCC 1A11654T = KCTC 33831T). Based on phylogenetic analyses, B. taeanensis should be transferred to a new genus, named Maribacillus, as Maribacillus taeanensis comb. nov., with type strain BH030017T (= KCTC 3918T = DSM 16466T).


Lottiidibacillus patelloidae Marine limpet Taxonomy Maribacillus taeanensis Reclassification 



Marine Culture Collection of China


Korean Collection for Type Cultures


Japan Collection of Microorganisms



We thank Professor A. Oren (The Hebrew University of Jerusalem) for his suggestion regarding Latin nomenclature for the new genera. And we are grateful to KCTC and JCM for their kind providing the reference type strains. This work was financially supported by the projects of the National Natural Science Foundation of China (No. 41676149) and National Infrastructure of Microbial Resources of China (NIMR-2018-9). We also thank James Allen, DPhil, from Liwen Bianji, Edanz Group China, for editing the English text of a draft of this manuscript.

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material

10482_2018_1213_MOESM1_ESM.doc (3.3 mb)
Supplementary material 1 (DOC 3400 kb)


  1. Albert RA, Archambault J, Lempa M et al (2007) Proposal of Viridibacillus gen. nov. and reclassification of Bacillus arvi, Bacillus arenosi and Bacillus neidei as Viridibacillus arvi gen. nov., comb. nov., Viridibacillus arenosi comb. nov. and Viridibacillus neidei comb. nov. Int J Syst Evol Microbiol 57(12):2729–2737CrossRefGoogle Scholar
  2. Ash C, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test (journal article). Antonie Van Leeuwenhoek 64(3):253–260Google Scholar
  3. Bankevich A, Nurk S, Antipov D et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477CrossRefGoogle Scholar
  4. Bhatt HB, Azmatunnisa Begum M, Chintalapati S, Chintalapati VR, Singh SP (2017) Desertibacillus haloalkaliphilus gen. nov., sp. nov., isolated from a saline desert. Int J Syst Evol Microbiol 67(11):4435–4442CrossRefGoogle Scholar
  5. Cowan S, Steel K (1965) Manual for the identification of medical bacteria. Cambridge University Press, LondonGoogle Scholar
  6. Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29(8):1072–1075CrossRefGoogle Scholar
  7. Hirota K, Aino K, Yumoto I (2016a) Fermentibacillus polygoni gen. nov., sp. nov., an alkaliphile that reduces indigo dye. Int J Syst Evol Microbiol 66(6):2247–2253CrossRefGoogle Scholar
  8. Hirota K, Okamoto T, Matsuyama H, Yumoto I (2016b) Polygonibacillus indicireducens gen. nov., sp. nov., an indigo-reducing and obligate alkaliphile isolated from indigo fermentation liquor for dyeing. Int J Syst Evol Microbiol 66(11):4650–4656CrossRefGoogle Scholar
  9. Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11:109–119CrossRefGoogle Scholar
  10. Ivanova EP, Alexeeva YA, Zhukova NV et al (2004) Bacillus algicola sp. nov., a novel filamentous organism isolated from brown alga Fucus evanescens. Syst Appl Microbiol 27(3):301–307CrossRefGoogle Scholar
  11. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences (journal article). J Mol Evol 16(2):111–120CrossRefGoogle Scholar
  12. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33(7):1870–1874CrossRefGoogle Scholar
  13. Larkin JM, Stokes JL (1966) Isolation of Psychrophilic Species of Bacillus. J Bacteriol 91(5):1667–1671Google Scholar
  14. Lim JM, Jeon CO, Kim CJ (2006) Bacillus taeanensis sp. nov., a halophilic Gram-positive bacterium from a solar saltern in Korea. Int J Syst Evol Microbiol 56(12):2903–2908CrossRefGoogle Scholar
  15. Liu Y, Lai Q, Du J, Shao Z (2016) Bacillus zhangzhouensis sp. nov. and Bacillus australimaris sp. nov. Int J Syst Evol Mol 66(3):1193–1199CrossRefGoogle Scholar
  16. Logan NA, Berge O, Bishop AH et al (2009) Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59(8):2114–2121CrossRefGoogle Scholar
  17. Minnikin DE, O’Donnell AG, Goodfellow M et al (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2(5):233–241CrossRefGoogle Scholar
  18. Nazina TN, Tourova TP, Poltaraus AB et al (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. th. Int J Syst Evol Microbiol 51(2):433–446CrossRefGoogle Scholar
  19. Nielsen P, Fritze D, Priest FG (1995) Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141(7):1745–1761CrossRefGoogle Scholar
  20. Osamu S, Hiroaki T, Kiyoshi K, Kazuo K (1996) Proposal for Two New Genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. International Of Journal Of Systematic Bacteriology 46(4):939–946CrossRefGoogle Scholar
  21. Richter M, Rossello´-Mo´ra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. PNAS 106(45):19126CrossRefGoogle Scholar
  22. Sezgin M, Jenkins D, Parker DS (1978) A Unified Theory of Filamentous Activated Sludge Bulking. J (Water Pollut Control Fed) 50(2):362–381Google Scholar
  23. Sorokin DY, van Pelt S, Tourova TP (2008) Utilization of aliphatic nitriles under haloalkaline conditions by Bacillus alkalinitrilicus sp. nov. isolated from soda solonchak soil. FEMS Microbiol Lett 288(2):235–240CrossRefGoogle Scholar
  24. Takami H, Kobata K, Nagahama T, Kobayashi H, Inoue A, Horikoshi K (1999) Biodiversity in deep-sea sites located near the south part of Japan (journal article). Extremophiles 3(2):97–102CrossRefGoogle Scholar
  25. Yanagida F, Suzuki K-I, Kaneko T, Kozaki M, Komagata K (1987) Morphological, biochemical, and physiological characteristics of spore-forming lactic acid bacteria. J Gen Appl Microbiol 33(1):33–45CrossRefGoogle Scholar
  26. Yoon JH, Kim IG, Kang KH, Oh TK, Park YH (2004) Bacillus hwajinpoensis sp. nov. and an unnamed Bacillus genomospecies, novel members of Bacillus rRNA group 6 isolated from sea water of the East Sea and the Yellow Sea in Korea. Int J Syst Evol Microbiol 54(3):803–808CrossRefGoogle Scholar
  27. Zavarzina DG, Tourova TP, Kolganova TV, Boulygina ES, Zhilina TN (2009) Description of Anaerobacillus alkalilacustre gen. nov., sp. nov.—Strictly anaerobic diazotrophic bacillus isolated from soda lake and transfer of Bacillus arseniciselenatis, Bacillus macyae, and Bacillus alkalidiazotrophicus to Anaerobacillus as the new combinations A. arseniciselenatis comb. nov., A. macyae comb. nov., and A. alkalidiazotrophicus comb. nov. Microbiology 78(6):723–731CrossRefGoogle Scholar
  28. Zhou Y, Xu J, Xu L, Tindall BJ (2009) Falsibacillus pallidus to replace the homonym Bacillus pallidus. Int J Syst Evol Microbiol 59(12):3176–3180CrossRefGoogle Scholar
  29. Zuo G, Hao B (2015) CVTree3 Web Server for Whole-genome-based and Alignment-free Prokaryotic Phylogeny and Taxonomy. Genom Proteom Bioinform 13(5):321–331CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Renju Liu
    • 1
    • 2
  • Zhaobin Huang
    • 1
    • 2
  • Chunming Dong
    • 1
    • 2
  • Zongze Shao
    • 1
    • 2
  1. 1.State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources, State Oceanic Administration; Fujian Key Laboratory of Marine Genetic ResourcesThird Institute of Oceanography, SOAXiamenChina
  2. 2.Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological ResourcesXiamenChina

Personalised recommendations