Advertisement

Antonie van Leeuwenhoek

, Volume 112, Issue 5, pp 785–796 | Cite as

Oceanobacillus timonensis sp. nov. and Oceanobacillus senegalensis sp. nov., two new moderately halophilic, Gram-stain positive bacteria isolated from stools sample of healthy young Senegalese

  • Bruno Senghor
  • Hubert Bassène
  • Saber Khelaifia
  • Catherine Robert
  • Pierre-Edouard Fournier
  • Raymond Ruimy
  • Cheikh Sokhna
  • Didier Raoult
  • Jean-Christophe LagierEmail author
Original Paper
  • 83 Downloads

Abstract

Oceanobacillus timonensis Marseille-P3532T (CSUR P3532, CCUG 70981) and Oceanobacillus senegalensis Marseille-P3587T (CSUR P3587, CCUG 70613), are the type strains of O. timonensis sp. nov. and O. senegalensis sp. nov., respectively. They are moderately halophilic, aerobic, motile and Gram-stain positive bacteria. The strains P3532T and P3587T were isolated from stools with 3.8% and 2.1% sodium chloride (NaCl) of healthy 10 year old female and male 7-year-old children, respectively and living respectively at Dielmo and N’diop two villages in Senegal (West Africa). This study aimed to describe the genome and phenotypic characteristics of O. timonensis Marseille-P3532T and O. senegalensis Marseille-P3587T. The genomes are 4,485,335 bp long for O. timonensis and 4,300,331 bp for O. senegalensis with 38.78% and 36.92% G+C content, respectively. They contain 4306 and 3979 protein-coding and 87 and 273 RNAs genes, respectively.

Keywords

Oceanobacillus timonensis Oceanobacillus senegalensis genome Halophilic bacteria Human gut Culturomics Taxonogenomic 

Notes

Acknowledgements

The authors thank the Xegen Company (www.xegen.fr) for automating the genomic annotation process. This work was carried out thanks to the support of the Méditerranée Infection Foundation and the National Research Agency under the program “Investissements d’avenir,” reference ANR-10-IAHU-03.

Author contributions

DR, JCL, CS and RR: study conception; BS, HB and SK: Stool collection, culture and phenotypic experiments; CR, PEF: genome sequencing and analysis; BS and JCL wrote the manuscript. CS, RR, HB, SK, CR and PEF: reviewing the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare they have no conflict of interest.

Supplementary material

10482_2018_1212_MOESM1_ESM.pdf (61 kb)
Supplementary material 1 (PDF 61 kb)
10482_2018_1212_MOESM2_ESM.pdf (63 kb)
Supplementary material 2 (PDF 63 kb)
10482_2018_1212_MOESM3_ESM.tif (1.9 mb)
Supplementary material 3 (TIFF 1972 kb)
10482_2018_1212_MOESM4_ESM.tif (1.9 mb)
Supplementary material 4 (TIFF 1899 kb)
10482_2018_1212_MOESM5_ESM.pdf (141 kb)
Supplementary material 5 (PDF 141 kb)
10482_2018_1212_MOESM6_ESM.pdf (107 kb)
Supplementary material 6 (PDF 106 kb)
10482_2018_1212_MOESM7_ESM.pdf (181 kb)
Supplementary material 7 (PDF 181 kb)
10482_2018_1212_MOESM8_ESM.docx (64 kb)
Supplementary material 8 (DOCX 63 kb)

References

  1. Amoozegar MA, Bagheri M, Makhdoumi-Kakhki A et al (2014) Oceanobacillus limi sp. nov., a moderately halophilic bacterium from a salt lake. Int J Syst Evol Microbiol 64:1284–1289CrossRefGoogle Scholar
  2. Amoozegar MA, Bagheri M, Makhdoumi A et al (2016a) Oceanobacillus longus sp. nov., a moderately halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 66:4225–4230CrossRefGoogle Scholar
  3. Amoozegar MA, Bagheri M, Makhdoumi A et al (2016b) Oceanobacillus halophilus sp. nov., a novel moderately halophilic bacterium from a hypersaline lake. Int J Syst Evol Microbiol 66:1317–1322CrossRefGoogle Scholar
  4. Bagheri M, Amoozegar MA, Schumann P et al (2013) Ornithinibacillus halophilus sp. nov., a moderately halophilic, Gram-stain-positive, endospore-forming bacterium from a hypersaline lake. Int J Syst Evol Microbiol 63:844–848CrossRefGoogle Scholar
  5. Dione N, Sankar SA, Lagier JC et al (2016) Genome sequence and description of Anaerosalibacter massiliensis sp. nov. New Microbes New Infect 10:66–76CrossRefGoogle Scholar
  6. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113CrossRefGoogle Scholar
  7. Field D, Garrity G, Gray T et al (2008) The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 26:541–547CrossRefGoogle Scholar
  8. Heyrman J, Vanparys B, Logan NA et al (2004) Bacillus novalis sp. nov., Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov. and Bacillus drentensis sp. nov., from the Drentse A grasslands. Int J Syst Evol Microbiol 54:47–57CrossRefGoogle Scholar
  9. Hirota K, Aino K, Nodasaka Y et al (2013a) Oceanobacillus indicireducens sp. nov., a facultative alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 63:1437–1442CrossRefGoogle Scholar
  10. Hirota K, Hanaoka Y, Nodasaka Y et al (2013b) Oceanobacillus polygoni sp. nov., a facultatively alkaliphile isolated from indigo fermentation fluid. Int J Syst Evol Microbiol 63:3307–3312CrossRefGoogle Scholar
  11. Khelaifia S, Lagier JC, Bibi F et al (2016) Microbial culturomics to map halophilic bacterium in human gut: genome sequence and description of Oceanobacillus jeddahense sp. nov. OMICS 20:248–258CrossRefGoogle Scholar
  12. Kim YG, Choi DH, Hyun S et al (2007) Oceanobacillus profundus sp. nov., isolated from a deep-sea sediment core. Int J Syst Evol Microbiol 57:409–413CrossRefGoogle Scholar
  13. Kim W, Siamphan C, Kim JH et al (2015) Oceanobacillus arenosus sp. nov., a moderately halophilic bacterium isolated from marine sand. Int J Syst Evol Microbiol 65:2943–2948CrossRefGoogle Scholar
  14. Lagier JC, Hugon P, Khelaifia S et al (2015) The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin Microbiol Rev 28:237–264CrossRefGoogle Scholar
  15. Lagier JC, Khelaifia S, Alou MT et al (2016) Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol 1:16203CrossRefGoogle Scholar
  16. Lee JS, Lim JM, Lee KC et al (2006a) Virgibacillus koreensis sp. nov., a novel bacterium from a salt field, and transfer of Virgibacillus picturae to the genus Oceanobacillus as Oceanobacillus picturae comb. nov. with emended descriptions. Int J Syst Evol Microbiol 56:251–257CrossRefGoogle Scholar
  17. Lee JS, Lim JM, Lee KC et al (2006b) Virgibacillus koreensis sp. nov., a novel bacterium from a salt field, and transfer of Virgibacillus picturae to the genus Oceanobacillus as Oceanobacillus picturae comb. nov. with emended descriptions. Int J Syst Evol Microbiol 56:251–257CrossRefGoogle Scholar
  18. Lee SY, Oh TK, Kim W et al (2010) Oceanobacillus locisalsi sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 60:2758–2762CrossRefGoogle Scholar
  19. Long X, Ye R, Zhang S et al (2015) Oceanobacillus damuensis sp. nov. and Oceanobacillus rekensis sp. nov., isolated from saline alkali soil samples. Antonie Van Leeuwenhoek 108:731–739CrossRefGoogle Scholar
  20. Lu J, Nogi Y, Takami H (2001) Oceanobacillus iheyensis gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050 m on the Iheya Ridge. FEMS Microbiol Lett 205:291–297CrossRefGoogle Scholar
  21. Luo R, Liu B, Xie Y et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1:18CrossRefGoogle Scholar
  22. Mayr R, Busse HJ, Worliczek HL et al (2006) Ornithinibacillus gen. nov., with the species Ornithinibacillus bavariensis sp. nov. and Ornithinibacillus californiensis sp. nov. Int J Syst Evol Microbiol 56:1383–1389CrossRefGoogle Scholar
  23. Mondal A, Kumar J, Pandey R et al (2017) Comparative genomics of host-symbiont and free-living Oceanobacillus species. Genome Biol Evol 9:1175–1182CrossRefGoogle Scholar
  24. Morel AS, Dubourg G, Prudent E et al (2015) Complementarity between targeted real-time specific PCR and conventional broad-range 16S rDNA PCR in the syndrome-driven diagnosis of infectious diseases. Eur J Clin Microbiol Infect Dis 34:561–570CrossRefGoogle Scholar
  25. Nakamura LK, Swezey J (1983) Taxonomy of Bacillus circulans Jordan 1890: base composition and reassociation of deoxyribonucleic aci. Int J Syst Evol Microbiol Bacteriol 33:46–52CrossRefGoogle Scholar
  26. Nam JH, Bae W, Lee DH (2008) Oceanobacillus caeni sp. nov., isolated from a Bacillus-dominated wastewater treatment system in Korea. Int J Syst Evol Microbiol 58:1109–1113CrossRefGoogle Scholar
  27. Namwong S, Tanasupawat S, Lee KC et al (2009) Oceanobacillus kapialis sp. nov., from fermented shrimp paste in Thailand. Int J Syst Evol Microbiol 59:2254–2259CrossRefGoogle Scholar
  28. Nurk S, Bankevich A, Antipov D et al (2013) Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J Comput Biol 20:714–737CrossRefGoogle Scholar
  29. Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26:1641–1650CrossRefGoogle Scholar
  30. Raats D, Halpern M (2007) Oceanobacillus chironomi sp. nov., a halotolerant and facultatively alkaliphilic species isolated from a chironomid egg mass. Int J Syst Evol Microbiol 57:255–259CrossRefGoogle Scholar
  31. Ramasamy D, Mishra AK, Lagier JC et al (2014) A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species. Int J Syst Evol Microbiol 64:384–391CrossRefGoogle Scholar
  32. Romano I, Lama L, Nicolaus B et al (2006) Oceanobacillus oncorhynchi subsp. incaldanensis subsp. nov., an alkalitolerant halophile isolated from an algal mat collected from a sulfurous spring in Campania (Italy), and emended description of Oceanobacillus oncorhynchi. Int J Syst Evol Microbiol 56:805–810CrossRefGoogle Scholar
  33. Roux V, Million M, Robert C et al (2013) Non-contiguous finished genome sequence and description of Oceanobacillus massiliensis sp. nov. Stand Genomic Sci 9:370–384CrossRefGoogle Scholar
  34. Sasser M (2006) Bacterial identification by gas chromatographic analysis of fatty acids methyl esters (GC-FAME) Technical note 101. MIDI Inc, NewarkGoogle Scholar
  35. Seng P, Abat C, Rolain JM et al (2013) Identification of rare pathogenic bacteria in a clinical microbiology laboratory: impact of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 51:2182–2194CrossRefGoogle Scholar
  36. Senghor B, Seck EH, Khelaifia S et al (2017) Description of ‘Bacillus dakarensis’ sp. nov., ‘Bacillus sinesaloumensis’ sp. nov., ‘Gracilibacillus timonensis’ sp. nov., ‘Halobacillus massiliensis’ sp. nov., ‘Lentibacillus massiliensis’ sp. nov., ‘Oceanobacillus senegalensis’ sp. nov., ‘Oceanobacillus timonensis’ sp. nov., ‘Virgibacillus dakarensis’ sp. nov. and ‘Virgibacillus marseillensis’ sp. nov., nine halophilic new species isolated from human stool. New Microbes New Infect 17:45–51CrossRefGoogle Scholar
  37. Senghor B, Bassene H, Khelaifia S et al (2018) Sediminibacillus massiliensis sp. nov., a moderately halophilic, Gram-positive bacterium isolated from a stool sample of a young Senegalese man. Antonie Van Leeuwenhoek 111:1225–1236CrossRefGoogle Scholar
  38. Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491CrossRefGoogle Scholar
  39. Tominaga T, An SY, Oyaizu H et al (2009) Oceanobacillus soja sp. nov. isolated from soy sauce production equipment in Japan. J Gen Appl Microbiol 55:225–232CrossRefGoogle Scholar
  40. Whon TW, Jung MJ, Roh SW et al (2010) Oceanobacillus kimchii sp. nov. isolated from a traditional Korean fermented food. J Microbiol 48:862–866CrossRefGoogle Scholar
  41. Wu M, Yang G, Yu Z et al (2014) Oceanobacillus luteolus sp. nov., isolated from soil. Int J Syst Evol Microbiol 64:1495–1500CrossRefGoogle Scholar
  42. Yang JY, Huo YY, Xu XW et al (2010) Oceanobacillus neutriphilus sp. nov., isolated from activated sludge in a bioreactor. Int J Syst Evol Microbiol 60:2409–2414CrossRefGoogle Scholar
  43. Yongchang O, Xiang W, Wang G (2015) Oceanobacillus bengalensis sp. nov., a bacterium isolated from seawater of the Bay of Bengal. Antonie Van Leeuwenhoek 108:1189–1196CrossRefGoogle Scholar
  44. Yu C, Yu S, Zhang Z et al (2014) Oceanobacillus pacificus sp. nov., isolated from a deep-sea sediment. Int J Syst Evol Microbiol 64:1278–1283CrossRefGoogle Scholar
  45. Yumoto I, Hirota K, Nodasaka Y et al (2005) Oceanobacillus oncorhynchi sp. nov., a halotolerant obligate alkaliphile isolated from the skin of a rainbow trout (Oncorhynchus mykiss), and emended description of the genus Oceanobacillus. Int J Syst Evol Microbiol 55:1521–1524CrossRefGoogle Scholar
  46. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Bruno Senghor
    • 1
    • 2
  • Hubert Bassène
    • 3
  • Saber Khelaifia
    • 1
  • Catherine Robert
    • 3
  • Pierre-Edouard Fournier
    • 3
  • Raymond Ruimy
    • 4
    • 5
  • Cheikh Sokhna
    • 3
  • Didier Raoult
    • 1
  • Jean-Christophe Lagier
    • 1
    Email author
  1. 1.Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU Méditerranée InfectionMarseilleFrance
  2. 2.Fondation Méditerranée InfectionIHU Méditerranée InfectionMarseilleFrance
  3. 3.Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, IHU Méditerranée InfectionMarseilleFrance
  4. 4.Department of BacteriologyNice Academic HospitalNiceFrance
  5. 5.Nice-Sophia Antipolis University, INSERM U1065 (C3M), Bacterial Toxins in Host Pathogen Interactions, C3MBâtiment Universitaire, ArchimedNiceFrance

Personalised recommendations