Advertisement

Antonie van Leeuwenhoek

, Volume 111, Issue 4, pp 629–636 | Cite as

Rhodococcus psychrotolerans sp. nov., isolated from rhizosphere of Deschampsia antarctica

  • Leonardo Jose Silva
  • Danilo Tosta Souza
  • Diego Bonaldo Genuario
  • Harold Alexander Vargas Hoyos
  • Suikinai Nobre Santos
  • Luiz Henrique Rosa
  • Tiago Domingues Zucchi
  • Itamar Soares MeloEmail author
Original Paper

Abstract

A novel actinobacterium, designated strain CMAA 1533T, was isolated from the rhizosphere of Deschampsia antarctica collected at King George Island, Antarctic Peninsula. Strain CMAA 1533T was found to grow over a wide range of temperatures (4–28 °C) and pH (4–10). Macroscopically, the colonies were observed to be circular shaped, smooth, brittle and opaque-cream on most of the culture media tested. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CMAA 1533T belongs to the family Nocardiaceae and forms a distinct phyletic line within the genus Rhodococcus. Sequence similarity calculations indicated that the novel strain is closely related to Rhodococcus degradans CCM 4446T, Rhodococcus erythropolis NBRC 15567T and Rhodococcus triatomae DSM 44892T (≤ 96.9%). The organism was found to contain meso-diaminopimelic acid, galactose and arabinose in whole cell hydrolysates. Its predominant isoprenologue was identified as MK-8(H2) and the polar lipids as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannosides. The major fatty acids were identified as Summed feature (C16:1 ω6c and/or C16:1 ω7c), C16:0, C18:1 ω9c and 10-methyl C18:0. The G+C content of genomic DNA was determined to be 65.5 mol%. Unlike the closely related type strains, CMAA 1533T can grow at 4 °C but not at 37 °C and was able to utilise adonitol and galactose as sole carbon sources. Based on phylogenetic, chemotaxonomic and physiological data, it is concluded that strain CMAA 1533T (= NRRL B-65465T = DSM 104532T) represents a new species of the genus Rhodococcus, for which the name Rhodococcus psychrotolerans sp. nov. is proposed.

Keywords

Antarctic actinomycetes CMAA 1533T Polyphasic approach Taxonomy 

Notes

Acknowledgements

Silva, L.J. thanks the support from National Council for Scientific and Technological Development [CNPq 141705/2014-0] and [CNPq PROANTAR 407230/2013-0, INCT Criosfera]. Genuario, D. B. and Souza, D.T were supported by FAPESP graduate scholarships 2014/26131-7 and 2013/25505-8, respectively. The authors are grateful to Marcia Maria Parma Leme, João Luiz da Silva, Renato Barbosa Salaroli and Roseli dos Santos Nascimento by their contributions with the laboratory techniques. Finally, thanks are due to the PROANTAR Research Program and Brazilian Navy for logistical support during the OPERANTAR EXPEDITION.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10482_2017_983_MOESM1_ESM.docx (896 kb)
Supplementary material 1 (DOCX 895 kb)

References

  1. Adachi K, Katsuta A, Matsuda S, Peng X, Misawa N, Shizuri Y, Kroppenstedt RM, Yokota A, Kasai H (2007) Smaragdicoccus niigatensis gen. nov., sp. nov., a novel member of the suborder Corynebacterineae. Int J Syst Evolut Microbiol 57:297–301CrossRefGoogle Scholar
  2. Anastasi E, MacArthur I, Scortti M, Alvarez S, Giguère S, Vázquez-Boland JA (2016) Pangenome and phylogenomic analysis of the pathogenic actinobacterium Rhodococcus equi. Genome Biol Evol 8:3140–3148CrossRefPubMedPubMedCentralGoogle Scholar
  3. Collins MD, Goodfellow M (1979) Isoprenoid Quinones in the classification of Coryneform and related bacteria. J Gen Microbiol 110:127–136CrossRefPubMedGoogle Scholar
  4. Creason AL, Davis EW, Putnam ML II, Vandeputte OM, Chang JH (2014) Use of whole genome sequences to develop a molecular phylogenetic framework for Rhodococcus fascians and the Rhodococcus genus. Front Plant Sci 5:406CrossRefPubMedPubMedCentralGoogle Scholar
  5. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedGoogle Scholar
  6. Felsenstein J (1985) Phylogenies and the comparative method. Am Soc Nat 125:1–15CrossRefGoogle Scholar
  7. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Soc Syst Biol 20:406–416CrossRefGoogle Scholar
  8. Gonzalez JM, Saiz-Jimenez C (2005) A simple fluorimetric method for the estimation of DNA–DNA relatedness between closely related microorganisms by thermal denaturation temperatures. Extremophiles 9:75–79CrossRefPubMedGoogle Scholar
  9. Goodfellow M, Sangal V, Jones AL, Sutcliffe IC (2015) Charting stormy waters: a commentary on the nomenclature of the equine pathogen variously named Prescottella equi, Rhodococcus equi and Rhodococcus hoagii. Equine Vet J 47:508–509CrossRefPubMedGoogle Scholar
  10. Gordon RE, Mihm JM (1962) Identification of Nocardia caviae (Erikson) nov. comb. Ann N Y Acad Sci 98:628–636CrossRefGoogle Scholar
  11. Guo QQ, Ming H, Meng XL, Duan YY, Gao R, Zhang JX, Huang JR, Li WJ, Nie GX (2015) Rhodococcus agglutinans sp. nov., an actinobacterium isolated from a soil sample. Antonie Van Leeuwenhoek 107:1271–1280CrossRefPubMedGoogle Scholar
  12. Hasegawa T, Takaziwa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322CrossRefGoogle Scholar
  13. Hwang CY, Lee I, Cho Y, Lee YM, Baek K, Jung YJ, Yang YY, Lee T, Rhee TS, Lee HK (2015) Rhodococcus aerolatus sp. nov., isolated from subarctic rainwater. Int J Syst Evolut Microbiol 65:465–471CrossRefGoogle Scholar
  14. Jones AL, Goodfellow M (2015) Rhodococcus Bergey´s manual of systematics bacteriology. Springer, BerlinGoogle Scholar
  15. Jones AL, Sutcliffe IC, Goodfellow M (2013) Proposal to replace the illegitimate genus name Prescottia Jones et al. 2013 with the genus name Prescottella gen. nov. and to replace the illegitimate combination Prescottia equi Jones et al. 2013 with Prescottella equi comb. nov. Antonie Van Leeuwenhoek 103:1405–1407CrossRefPubMedGoogle Scholar
  16. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefPubMedGoogle Scholar
  17. Kuster E, Williams S (1964) Selection of media for isolation of Streptomycetes. Nat Microbiol 3:928–929Google Scholar
  18. Lechevalier MP, Lechevalier H (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443CrossRefGoogle Scholar
  19. Lechevalier MP, De Bievre C, Lechevalier H (1977) Chemotaxonomy of aerobic Actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260CrossRefGoogle Scholar
  20. Li J, Zhao GZ, Long LJ, Wang FZ, Tian XP, Zhang S, Li WJ (2012) Rhodococcus nanhaiensis ap. nov., an actinobacterium isolated from marine sediment. Int J Syst Evolut Microbiol 62:2517–2521CrossRefGoogle Scholar
  21. Martínková L, Uhnáková B, Pátek M, Nesvera J, Kren V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177CrossRefPubMedGoogle Scholar
  22. Meier-Kolthoff JP, Goker M, Sproer C, Klenk HP (2013) When should a DDH experiment be mandatory in microbial taxonomy? Arch Microbiol 195:413–418CrossRefPubMedGoogle Scholar
  23. Minnikin D, Hutchinson I, Caldicott A, Goodfellow M (1980) Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr 188:221–233CrossRefGoogle Scholar
  24. Minnikin DE, O`donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  25. Rosselló-Móra R, Trujillo ME, Sutcliffe IC (2017) Introducing a digital protologue: a timely move towards a database-driven systematic of archaea and bacteria. Antonie Van Leeuwenhoek 110:455–456CrossRefPubMedGoogle Scholar
  26. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  27. Sangal V, Goodfellow M, Jones AL, Schwalbe EC, Blom J, Hoskisson PA, Sutcliffe IC (2016) Next-generation systematics: an innovative approach to resolve the structure of complex prokaryotic taxa. Sci Rep 6:38392CrossRefPubMedPubMedCentralGoogle Scholar
  28. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI—Tech Note 101:1–6Google Scholar
  29. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  30. Silva LJ, Taketani RG, Melo IS, Goodfellow M, Zucchi TD (2013) Streptomyces araujoniae sp. nov.: an actinomycete isolated from a potato tubercle. Antonie Van Leeuwenhoek 103:1235–1244CrossRefPubMedGoogle Scholar
  31. Souza DT, da Silva FSP, da Silva LJ, Crevelin EJ, Moraes LAB, Zucchi TD, Melo IS (2017) Saccharopolyspora spongiae sp. nov., a novel actinomycete isolated from the marine sponge Scopalina ruetzleri (Wiedenmayer, 1977). Int J Syst Evolut Microbiol 67:2019–2025CrossRefGoogle Scholar
  32. Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491CrossRefGoogle Scholar
  33. Staneck J, Roberts GD (1974) Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231PubMedPubMedCentralGoogle Scholar
  34. Taketani RG, Zucchi TD, Melo IS, Mendes R (2013) Whole-genome shotgun sequencing of Rhodococcus erythropolis strain P27, a highly radiation-resistant actinomycete from Antarctica. Genome Announc 1:e00763Google Scholar
  35. Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition- transversion and G+C content biases. Mol Biol Evol 9:678–687PubMedGoogle Scholar
  36. Wang Z, Xu J, Li Y, Wang K, Wang Y, Hong Q, Li WJ, Li SP (2010) Rhodococcus jialingiae sp. nov., an actinobacterium isolated from sludge of a carbendazim wastewater treatment facility. Int J Syst Evolut Microbiol 60:378–381CrossRefGoogle Scholar
  37. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evolut Microbiol 67:1613–1617CrossRefGoogle Scholar
  38. Zhi XY, Li WJ, Stackebrandt E (2009) An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evolut Microbiol 59:589–608CrossRefGoogle Scholar
  39. Zopf W (1981) Uber Ausscheidung von Fettfarbstoffen (Lipochromen) seitens gewisser Spaltpilze. Berichte der Deutschen Botanischen Gesellschaft 9:22–28Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Leonardo Jose Silva
    • 1
    • 2
  • Danilo Tosta Souza
    • 2
  • Diego Bonaldo Genuario
    • 2
  • Harold Alexander Vargas Hoyos
    • 1
    • 2
  • Suikinai Nobre Santos
    • 2
  • Luiz Henrique Rosa
    • 3
  • Tiago Domingues Zucchi
    • 4
  • Itamar Soares Melo
    • 2
    Email author
  1. 1.College of Agriculture “Luiz de Queiroz”University of São PauloPiracicabaBrazil
  2. 2.Laboratory of Environmental MicrobiologyBrazilian Agricultural Research Corporation, EMBRAPA EnvironmentJaguariúnaBrazil
  3. 3.Department of Microbiology, Institute of Biological SciencesFederal University of Minas GeraisBelo HorizonteBrazil
  4. 4.Agrivalle, Agricultural BiotechnologySaltoBrazil

Personalised recommendations