Antonie van Leeuwenhoek

, Volume 111, Issue 4, pp 619–627 | Cite as

Deinococcus multiflagellatus sp. nov., isolated from a car air-conditioning system

  • Dong-Uk Kim
  • Hyosun Lee
  • Suyeon Lee
  • Sooyeon Park
  • Jung-Hoon Yoon
  • Lei Zhao
  • Min-Kyu Kim
  • Jae-Hyung Ahn
  • Jong-Ok KaEmail author
Original Paper


A gamma radiation-resistant and pink-to-red pigmented bacterial strain, designated ID1504T, was isolated from a car air-conditioning system sampled in Korea. The cells were observed to be Gram-stain negative, aerobic, motile with peritrichous flagella and short rod-shaped. Phylogenetically, the strain groups with the members of the genus Deinococcus and exhibits high 16S rRNA gene sequence similarities with Deinococcus arenae SA1T (94.0%), Deinococcus actinosclerus BM2T (93.9%) and Deinococcus soli N5T (93.5%). The predominant fatty acids were identified as C17:0, C16:0, summed feature 3 (C16:1 ω7c and/or C16:1 ω6c) and iso-C17:0. The major respiratory quinone was identified as MK-8. The polar lipids were found to be comprised of unidentified phospholipids, unidentified glycolipids, an unidentified aminophospholipid and an unidentified lipid. The DNA G+C content of the strain was determined to be 68.3 mol%. On the basis of the phenotypic, genotypic and chemotaxonomic characteristics, strain ID1504T should be classified in a novel species in the genus Deinococcus, for which the name Deinococcus multiflagellatus sp. nov. (= KACC 19287T = NBRC 112888T) is proposed.


Deinococcus multiflagellatus Novel species Polyphasic taxonomy 



This study was supported by a Grant from the Regional Subgenebank Support Program of Rural Development Administration, Republic of Korea.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10482_2017_982_MOESM1_ESM.pdf (1.4 mb)
Supplementary material 1 (PDF 1445 kb)


  1. Ahmed I, Abbas S, Kudo T, Iqbal M, Fujiwara T, Ohkuma M (2014) Deinococcus citri sp. nov., isolated from citrus leaf canker lesions. Int J Syst Evol Microbiol 64:4134–4140CrossRefPubMedGoogle Scholar
  2. Asker D, Awad TS, Beppu T, Ueda K (2009) Deinococcus aquiradiocola sp. nov., isolated from a radioactive site in Japan. Int J Syst Evol Microbiol 59:144–149CrossRefPubMedGoogle Scholar
  3. Asker D, Awad TS, McLandsborough L, Beppu T, Ueda K (2011) Deinococcus depolymerans sp. nov., a gamma- and UV-radiation-resistant bacterium, isolated from a naturally radioactive site. Int J Syst Evol Microbiol 61:1448–1453CrossRefPubMedGoogle Scholar
  4. Breznak JA, Costilow RN (2007) Physicochemical factors in growth. In: Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 309–329Google Scholar
  5. Brooks BW, Murray RGE (1981) Nomenclature for “Micrococcus radiodurans” and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int J Syst Evol Microbiol 31:353–360Google Scholar
  6. Cha S, Srinivasan S, Seo T, Kim MK (2014) Deinococcus soli sp. nov., a gamma-radiation-resistant bacterium isolated from rice field soil. Curr Microbiol 68:777–783CrossRefPubMedGoogle Scholar
  7. Chen W, Wang B, Hong H, Yang H, Liu SJ (2012) Deinococcus reticulitermitis sp. nov., isolated from a termite gut. Int J Syst Evol Microbiol 62:78–83CrossRefPubMedGoogle Scholar
  8. De Groot A, Chapon V, Servant P, Christen R, Saux MF, Saux S, Heulin T (2005) Deinococcus deserti sp. nov., a gamma-radiation-tolerant bacterium isolated from the Sahara Desert. Int J Syst Evol Microbiol 55:2441–2446CrossRefPubMedGoogle Scholar
  9. Embley TM, Wait R (1994) Structural lipids of eubacteria. In: Goodfellow M, O’Donnell AG (eds) Modern microbial method: chemical methods in prokaryotic systematics. Wiley, Chichester, pp 121–161Google Scholar
  10. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedGoogle Scholar
  11. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefPubMedGoogle Scholar
  12. Ferreira AC, Nobre MF, Rainey FA, Silva MT, Wait R, Burghardt J, Chung AP, Da costa MS (1997) Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 47:939–947CrossRefPubMedGoogle Scholar
  13. Fitch WM (1971) Toward defining course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  14. Gonzalez J, Saiz-Jimenez C (2002) A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773CrossRefPubMedGoogle Scholar
  15. Hirsch P, Gallikowski CA, Siebert J, Peissl K, Kroppenstedt R, Schumann P, Stackebrandt E, Anderson R (2004) Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and draught-tolerating, UV-resistant bacteria from continental Antarctica. Syst Appl Microbiol 27:636–645CrossRefPubMedGoogle Scholar
  16. Joo ES, Lee JJ, Kang MS, Lim S, Jeon SW, Kim EB, Jeon SH, Srinivasan S, Kim MK (2016) Deinococcus actinosclerus sp. nov., a novel bacterium isolated from soil of a rocky hillside. Int J Syst Evol Microbiol 66:1003–1008CrossRefGoogle Scholar
  17. Kim DU, Ka JO (2014) Roseomonas soli sp. nov., isolated from an agricultural soil cultivated with Chinese cabbage (Brassica campestris). Int J Syst Evol Microbiol 64:1024–1029CrossRefPubMedGoogle Scholar
  18. Kim DU, Lee H, Lee JH, Ahn JH, Lim S, Jeong S, Park SY, Seong CH, Ka JO (2015) Deinococcus metallilatus sp. nov. and Deinococcus carri sp. nov., isolated from a car air-conditioning system. Int J Syst Evol Microbiol 65:3175–3182CrossRefPubMedGoogle Scholar
  19. Komagata K, Suzuki KI (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207CrossRefGoogle Scholar
  20. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefPubMedGoogle Scholar
  21. Lai WA, Kämpfer P, Arun AB, Shen FT, Huber B, Rekha PD, Young CC (2006) Deinococcus ficus sp. nov., isolated from the rhizosphere of Ficus religiosa L. Int J Syst Evol Microbiol 56:787–791CrossRefPubMedGoogle Scholar
  22. Lee D, Cha S, Jang JH, Seo T (2016) Deinococcus arenae sp. nov., a novel species isolated from sand in South Korea. Antonie Van Leeuwenhoek 109:1055–1062CrossRefPubMedGoogle Scholar
  23. Minnikin DE, O’donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  24. Pruesse E, Peplies J, Glockner FO (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829CrossRefPubMedPubMedCentralGoogle Scholar
  25. Rainey FA, Ray K, Ferreira M, Gatz BZ, Nobre MF, Bagaley D, Rash BA, Park MJ, Earl AM, Shank NC, Small AM, Henk MC, Battista JR, Kämpfer P, da Costa MS (2005) Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 71:5225–5235CrossRefPubMedPubMedCentralGoogle Scholar
  26. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  27. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI technical note 101. Microbial ID, Inc, NewarkGoogle Scholar
  28. Shashidhar R, Bandekar JR (2009) Deinococcus piscis sp. nov., a radiation-resistant bacterium isolated from a marine fish. Int J Syst Evol Microbiol 59:2714–2717CrossRefPubMedGoogle Scholar
  29. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654Google Scholar
  30. Srinivasan S, Kim MK, Lim S, Joe M, Lee M (2012) Deinococcus daejeonensis sp. nov., isolated from sludge in a sewage disposal plant. Int J Syst Evol Microbiol 62:1265–1270CrossRefPubMedGoogle Scholar
  31. Weon HY, Kim BY, Schumann P, Son JA, Jang J, Go SJ, Kwon SW (2007) Deinococcus cellulosilyticus sp. nov., isolated from air. Int J Syst Evol Microbiol 57:1685–1688CrossRefPubMedGoogle Scholar
  32. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617CrossRefPubMedPubMedCentralGoogle Scholar
  33. Zhang YQ, Sun CH, Li WJ, Yu LY, Zhou JQ, Zhang YQ, Xu LH, Jiang CL (2007) Deinococcus yunweiensis sp. nov., a gamma- and UV-radiation-resistant bacterium from China. Int J Syst Evol Microbiol 57:370–375CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Agricultural Biotechnology and Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
  2. 2.Department of Food Science and BiotechnologySungkyunkwan UniversityJangan-gu, SuwonRepublic of Korea
  3. 3.Research Division for BiotechnologyKorea Atomic Energy Research InstituteJeongeupRepublic of Korea
  4. 4.Agricultural Microbiology DivisionNational Institute of Agricultural Sciences, Rural Development AdministrationWanju-gunRepublic of Korea

Personalised recommendations