Evidence from the gut microbiota of swarming alates of a vertical transmission of the bacterial symbionts in Nasutitermes arborum (Termitidae, Nasutitermitinae)

  • Michel Diouf
  • Vincent Hervé
  • Philippe Mora
  • Alain Robert
  • Sophie Frechault
  • Corinne Rouland-Lefèvre
  • Edouard Miambi
Original Paper

Abstract

Studies on termite symbiosis have revealed that significant symbiont lineages are maintained across generations. However, most studies have focused only on the worker caste. Little is known about the gut microbiota of reproductives, the most probable vectors for transmitting these lineages to offspring. Using 16S rRNA gene-based Illumina MiSeq sequencing, we compared the gut microbiota of swarming alates of the higher termite Nasutitermes arborum with those of their nestmates from the parental colony. The OTU-based alpha diversity indices showed that the gut microbiota of the alates was at least as diverse as those of non-reproductive adults. It was largely dominated by Spirochaetes mostly of the Treponema I cluster (63.1% of reads), the same dominant taxa found in soldiers and workers of this species and in workers of closely related Nasutitermes species. The termite-specific lineages also included other representative taxa such as several clusters of Bacteroidetes and Fibrobacteres-TG3 group. The microbiota of alates was dominated by a core set of host-specific lineages (87% of reads, 77.6% of OTUs), which were always present across all castes/stages. This first comprehensive survey of the microbiota of the founding reproductives of these xylophagous higher termites shows that the bulk of the host endogenous symbionts, mostly taxa that cannot thrive outside the gut, are brought from the parent colony. The royal pair therefore seems to be a key player in the transmission of symbionts across generations and thereby in host-symbiont codiversification. The high proportion of fiber-degrading lineages in their gut suggests a wood-rich diet unlike the larval stages.

Keywords

Swarming alates Nasutitermes Gut-microbiota Symbiont transmission 16S rRNA gene Treponema 

Supplementary material

10482_2017_978_MOESM1_ESM.pdf (350 kb)
Supplementary material 1 (PDF 350 kb)
10482_2017_978_MOESM2_ESM.pdf (40 kb)
Supplementary material 2 (PDF 39 kb)
10482_2017_978_MOESM3_ESM.xlsx (60 kb)
Supplementary material 3 (XLSX 60 kb)

References

  1. Abdul Rahman N, Parks DH, Willner DL et al (2015) A molecular survey of Australian and North American termite genera indicates that vertical inheritance is the primary force shaping termite gut microbiomes. Microbiome 3:1–16CrossRefGoogle Scholar
  2. Abdul Rahman N, Parks DH, Vanwonterghem I, Morrison M, Tyson GW, Hugenholtz P (2016) A phylogenomic analysis of the bacterial phylum fibrobacteres. Front Microbiol 6:1469CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ackerman IL, Teixeira WG, Riha SJ, Lehmann J, Fernandes ECM (2007) The impact of mound-building termites on surface soil properties in a secondary forest of Central Amazonia. Appl Soil Ecol 37:267–276CrossRefGoogle Scholar
  4. Adam RA, Mitchell JD (2009) Energetics and development of incipient colonies of the harvester termite Trinervitermes trinervoides (Sjöstedt) (Termitidae Nasutitermitinae). Insect Soc 56:21–27CrossRefGoogle Scholar
  5. Alibert J (1963) Échanges trophallactiques chez un termite supérieur. Contamination par le phosphore radioactif de la population d’un nid de Cubitermes fungifaber. Insect Soc 10:1–12CrossRefGoogle Scholar
  6. Anklin-Mühlemann R, Bignell DE, Veivers PC, Leuthold RH, Slaytor M (1995) Morphological, microbiological and biochemical studies of the gut flora in the fungus-growing termite Macrotermes subhvalinus. J Insect Physiol 41:929–940CrossRefGoogle Scholar
  7. Antonovics J, Wilson AJ, Forbes MR et al (2017) The evolution of transmission mode. Philos Trans R Soc B 372. 10.1098/rstb.2016.0083Google Scholar
  8. Benjamino J, Graf J (2016) Characterization of the core and caste-specific microbiota in the termite Reticulitermes flavipes. Front Microbiol 7:171CrossRefPubMedPubMedCentralGoogle Scholar
  9. Berlanga M (2015) Functional symbiosis and communication in microbial ecosystems. The case of woodeating termites and cockroaches. Int Microbiol 18:159–169PubMedGoogle Scholar
  10. Boucias DG, Cai Y, Sun Y, Lietze VU, Sen R, Raychoudhury R, Scharf ME (2013) The hindgut lumen prokaryotic microbiota of the termite Reticulitermes flavipes and its responses to dietary lignocellulose composition. Mol Ecol 22:1836–1853CrossRefPubMedGoogle Scholar
  11. Boulogne I, Constantino R, Amusant N, Falkowski M, Rodrigues AMS, Houël E (2017) Ecology of termites from the genus Nasutitermes (Termitidae: Nasutitermitinae) and potential for science-based development of sustainable pest management programs. J Pest Sci 90:19–37CrossRefGoogle Scholar
  12. Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12:168–180CrossRefPubMedGoogle Scholar
  13. Brune A, Dietrich C (2015) The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu Rev Microbiol 69:145–166CrossRefPubMedGoogle Scholar
  14. Dietrich C, Köhler T, Brune A (2014) The cockroach origin of the termite gut microbiota: patterns in bacterial community structure reflect major evolutionary events. Appl Environ Microbiol 80:2261–2269CrossRefPubMedPubMedCentralGoogle Scholar
  15. Diouf M, Roy V, Mora P et al (2015) Profiling the succession of bacterial communities throughout the life stages of a higher termite Nasutitermes arborum (Termitidae Nasutitermitinae) using 16S rRNA gene pyrosequencing. PLoS ONE 10:e0140014CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ebert D (2013) The epidemiology and evolution of symbionts with mixed-mode transmission. Annu Rev Ecol Evol Syst 44:623–643CrossRefGoogle Scholar
  17. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200CrossRefPubMedPubMedCentralGoogle Scholar
  18. Estes AM, Hearn DJ, Snell-Rood EC et al (2013) Brood ball-mediated transmission of microbiome members in the dung beetle Onthophagus taurus (Coleoptera: Scarabaeidae). PLoS ONE 8:e79061CrossRefPubMedPubMedCentralGoogle Scholar
  19. Evans TA, Dawes TZ, Ward PR, Lo N (2011) Ants and termites increase crop yield in a dry climate. Nat Commun 2:262CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fall S, Nazaret S, Chotte JL, Brauman A (2004) Bacterial density and community structure associated with aggregate size fractions of soil-feeding termite mounds. Microb Ecol 48:191–199CrossRefPubMedGoogle Scholar
  21. Fall S, Hamelin J, Ndiaye F, Assigbetse K, Aragno M, Chotte JL, Brauman A (2007) Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermes niokoloensis) and its mounds. Appl Environ Microbiol 73:5199–5208CrossRefPubMedPubMedCentralGoogle Scholar
  22. Friedrich MW, Schmitt-Wagner D, Lueders T, Brune A (2001) Axial differences in community structure of Crenarchaeota and Euryarchaeota in the highly compartmentalized gut of the soil-feeding termite Cubitermes orthognathus. Appl Environ Microbiol 67:4880–4890CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fujita A, Minamoto T, Shimizu I, Abe T (2002) Molecular cloning of lysozyme-encoding cDNAs expressed in the salivary gland of a wood-feeding termite Reticulitermes speratus. Insect Biochem Mol 32:1615–1624CrossRefGoogle Scholar
  24. Fujita A, Miura T, Matsumoto T (2008) differences in cellulose digestive systems among castes in two termite lineages. Physiol Entomol 33:73–82CrossRefGoogle Scholar
  25. Gihring TM, Green SJ, Schadt CW (2012) Massively parallel rRNA gene sequencing exacerbates the potential for biased community diversity comparisons due to variable library sizes. Environ Microbiol 14:285–290CrossRefPubMedGoogle Scholar
  26. Grassé P-P (1982) Les aliments élaborés et la trophallaxie. In: Gassé PP (ed) Termitologia: Anatomie physiologie et reproduction des termites. Masson, ParisGoogle Scholar
  27. He S, Ivanova N, Kirton E et al (2013) Comparative metagenomics and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites. PLoS ONE 8:e61126CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hogan M, Veivers PC, Slaytor M, Czolij RT (1988) The site of cellulose breakdown in higher termites (Nasutitermes walkeri and Nasutitermes exitiosus). J Insect Physiol 34:891–899CrossRefGoogle Scholar
  29. Hongoh Y, Deevong P, Inoue T et al (2005) Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol 71:6590–6599CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hongoh Y, Ekpornprasit L, Inoue T et al (2006a) Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus. Mol Ecol 15:505–516CrossRefPubMedGoogle Scholar
  31. Hongoh Y, Deevong P, Hattori S et al (2006b) Phylogenetic diversity, localization, and cell morphologies of members of the candidate phylum TG3 and a subphylum in the phylum Fibrobacteres, recently discovered bacterial groups dominant in termite guts. Appl Environ Microbiol 72:6780–6788CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hosokawa T, Kikuchi Y, Nikoh N, Shimada M, Fukatsu T (2006) Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLoS Biol 4:e337CrossRefPubMedPubMedCentralGoogle Scholar
  33. Huang QY, Wang WP, Mo RY, Lei CL (2008) Studies on feeding and trophallaxis in the subterranean termite Odontotermes formosanus using rubidium chloride. Entomol Exp Appl 129:210–215CrossRefGoogle Scholar
  34. Jones JA (1990) Termites soil fertility and carbon cycling in dry tropical Africa: a hypothesis. J Trop Ecol 6:291–305CrossRefGoogle Scholar
  35. Jouquet P, Traoré S, Choosai C, Hartmann C, Bignell D (2011) Influence of termites on ecosystem functioning. Ecosystem services provided by termites. Eur J Soil Biol 47:215–222CrossRefGoogle Scholar
  36. Kaiwa N, Hosokawa T, Nikoh N et al (2014) Symbiont-supplemented maternal investment underpinning host’s ecological adaptation. Curr Biol 24:2465–2470CrossRefPubMedGoogle Scholar
  37. Kikuchi Y, Hosokawa T, Nikoh N, Meng XY, Kamagata Y, Fukatsu T (2009) Host-symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of acanthosomatid stinkbugs. BMC Biol 7:2CrossRefPubMedPubMedCentralGoogle Scholar
  38. Köhler T, Dietrich C, Scheffrahn RH, Brune A (2014) High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.). Appl Environ Microbiol 78:4691–4701CrossRefGoogle Scholar
  39. König H, Li L, Fröhlich J (2013) The cellulolytic system of the termite gut. Appl Microbiol Biot 97:7943–7962CrossRefGoogle Scholar
  40. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefPubMedGoogle Scholar
  42. Lefebvre T, Miambi E, Pando A, Diouf M, Rouland-Lefèvre C (2009) Gut-specific actinobacterial community structure and diversity associated with the wood-feeding termite species Nasutitermes corniger (Motschulsky) described by nested PCR-DGGE analysis. Insect Soc 56:269–276CrossRefGoogle Scholar
  43. Li H, Dietrich C, Zhu N et al (2015) Age polyethism drives community structure of the bacterial gut microbiota in the fungus-cultivating termite Odontotermes formosanus. Environ Microbiol 18:1440–1451CrossRefPubMedGoogle Scholar
  44. Lima VLDS, Bailez OE, Viana-Bailez AM (2013) Caste polymorphism of apterous line of the Neotropical termite Nasutitermes corniger (Motschulsky) (Isoptera Termitidae). Rev Bras Entomol 57:309–312CrossRefGoogle Scholar
  45. Liu N, Zhang L, Zhou H et al (2013) Metagenomic insights into metabolic capacities of the gut microbiota in a fungus-cultivating termite Odontotermes yunnanensis. PLoS ONE 8:e69184CrossRefPubMedPubMedCentralGoogle Scholar
  46. Mikaelyan A, Strassert JFH, Tokuda G et al (2014) The fibre-associated cellulolytic bacterial community in the hindgut of wood feeding higher termites (Nasutitermes spp.). Environ Microbiol 16:2711–2722CrossRefGoogle Scholar
  47. Mikaelyan A, Dietrich C, Köhler T, Poulsen M, Sillam-Dussès D, Brune A (2015a) Diet is the primary determinant of bacterial community structure in the guts of higher termites. Mol Ecol 24:5284–5295CrossRefPubMedGoogle Scholar
  48. Mikaelyan A, Köhler T, Lampert N, Rohland J, Boga H, Meuser M, Brune A (2015b) Classifying the bacterial gut microbiota of termites and cockroaches: A curated phylogenetic reference database (DictDb). Syst Appl Microbiol 38:472–482CrossRefPubMedGoogle Scholar
  49. Mikaelyan A, Meuser K, Brune A (2017) Microenvironmental heterogeneity of gut compartments drives bacterial community structure in wood- and humus-feeding higher termites. FEMS Microbiol Ecol 93. 10.1093/femsec/fiw210Google Scholar
  50. Miyata R, Noda N, Tamaki H et al (2007) Influence of feed components on symbiotic bacterial community structure in the gut of the wood-feeding higher termite Nasutitermes takasagoensis. Biosci Biotech Bioch 71:1244–1251CrossRefGoogle Scholar
  51. Nakashima K, Watanabe H, Saitoh H, Tokuda G, Azuma JI (2002) Dual cellulose-digesting system of the wood-feeding termite Coptotermes formosanus Shiraki. Insect Biochem Mol 32:777–784CrossRefGoogle Scholar
  52. Ngugi DK, Brune A (2012) Nitrate reduction nitrous oxide formation and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.). Environ Microbiol 14:860–871CrossRefPubMedGoogle Scholar
  53. Ngugi DK, Ji R, Brune A (2011) Nitrogen mineralization denitrification and nitrate ammonification by soil-feeding termites: a 15 N-based approach. Biogeochemistry 103:355–369CrossRefGoogle Scholar
  54. Nikoh N, Hosokawa T, Oshima K, Hattori M, Fukatsu T (2011) Reductive evolution of bacterial genome in insect gut environment. Genome Biol Evol 3:702–714CrossRefPubMedPubMedCentralGoogle Scholar
  55. Noda S, Hongoh Y, Sato T, Ohkuma M (2009) Complex coevolutionary history of symbiotic Bacteroidales bacteria of various protists in the gut of termites. BMC Evol Biol 9:1–12CrossRefGoogle Scholar
  56. Noirot C (1955) Recherches sur le polymorphisme des termites supérieurs (Termitidae). Ann Sci Nat Zool 17:399–595Google Scholar
  57. Noirot C (1969) Glands and secretions. In: Krishna K, Weesner F (eds) Biology of termites. Academic Press, New York and LondonGoogle Scholar
  58. Noirot C (1985) The caste system in higher termites. In: Watson J, Okot-Kotber B, Noirot C (eds) Caste differentiation in social insects. Pergamon Press, OxfordGoogle Scholar
  59. Otani S, Mikaelyan A, Nobre T et al (2014) Identifying the core microbial community in the gut of fungus-growing termites. Mol Ecol 23:4631–4644CrossRefPubMedGoogle Scholar
  60. Oyarzun SE, Crawshaw GJ, Valdes EV (1996) Nutrition of the Tamandua. I. Nutrient composition of termites (Nasutitermes spp.) and stomach contents from wild tamanduas (Tamandua tetradactyla). Zoo Biol 15:509–524CrossRefGoogle Scholar
  61. Poulsen M, Hu H, Li C et al (2014) Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proc Natl Acad Sci USA 111:14500–14505CrossRefPubMedPubMedCentralGoogle Scholar
  62. Quast C, Pruesse E, Yilmaz P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596CrossRefPubMedGoogle Scholar
  63. Salem H, Florez L, Gerardo N, Kaltenpoth M (2015) An out-of-body experience: the extracellular dimension for the transmission of mutualistic bacteria in insects. Proc R Soc B 282:20142957CrossRefPubMedPubMedCentralGoogle Scholar
  64. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source platform-independent community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRefPubMedPubMedCentralGoogle Scholar
  65. Schmitt-Wagner D, Friedrich MW, Wagner B, Brune A (2003) Axial dynamics stability and interspecies similarity of bacterial community structure in the highly compartmentalized gut of soil-feeding termites (Cubitermes spp.). Appl Environ Microbiol 69:6018–6024CrossRefPubMedPubMedCentralGoogle Scholar
  66. Schnell IB, Bohmann K, Gilbert MTP (2015) Tag jumps illuminated–reducing sequence-to-sample misidentifications in metabarcoding studies. Mol Ecol Resour 15:1289–1303CrossRefPubMedGoogle Scholar
  67. Schwab DB, Riggs HE, Newton ILG, Moczek AP (2016) Developmental and ecological benefits of the maternally transmitted microbiota in a dung beetle. Am Nat 188:679–692CrossRefPubMedGoogle Scholar
  68. Shimada K, Lo N, Kitade O, Wakui A, Maekawa K (2013) Cellulolytic protist numbers rise and fall dramatically in termite queens and kings during colony foundation. Eukaryot Cell 12:545–550CrossRefPubMedPubMedCentralGoogle Scholar
  69. Su L, Yang L, Huang S et al (2016) Comparative gut microbiomes of four species representing the higher and the lower termites. J Insect Sci 16(97):1–9CrossRefPubMedPubMedCentralGoogle Scholar
  70. Thomas F, Hehemann JH, Rebuffet E, Czjzek M, Michel G (2011) Environmental and gut bacteroidetes: the food connection. Front Microbiol 2. doi:10.3389/fmicb.2011.00093Google Scholar
  71. Thongaram T, Hongoh Y, Kosono S et al (2005) Comparison of bacterial communities in the alkaline gut segment among various species of higher termites. Extremophiles 9:229–238CrossRefPubMedGoogle Scholar
  72. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267CrossRefPubMedPubMedCentralGoogle Scholar
  73. Wang Y, Su L, Huang S et al (2016) Diversity and resilience of the wood-feeding higher termite Mironasutitermes shangchengensis gut microbiota in response to temporal and diet variations. Ecol Evol 6:8235–8242CrossRefPubMedPubMedCentralGoogle Scholar
  74. Warnecke F, Luginbühl P, Ivanova N et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565CrossRefPubMedGoogle Scholar
  75. Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, Hyde ER (2017) Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5(1):27CrossRefPubMedPubMedCentralGoogle Scholar
  76. Yilmaz P, Parfrey LW, Yarza P et al (2014) The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res 42:D643–D648CrossRefPubMedGoogle Scholar
  77. Zhang M, Liu N, Qian C et al (2014) Phylogenetic and functional analysis of gut microbiota of a fungus-growing higher termite: Bacteroidetes from higher termites are a rich source of β-glucosidase genes. Microb Ecol 68:416–425CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Département ECOEVOInstitut d’Ecologie et des Sciences de l’Environnement de Paris (IEES, Paris), équipe Biologie des termites et fonctionnement des écosystèmes tropicaux (EcoTerm), Faculté des Sciences et TechnologieCréteilFrance
  2. 2.Laboratory of Microbiology, Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
  3. 3.Laboratory of Biogeosciences, Institute of Earth Surface DynamicsUniversity of LausanneLausanneSwitzerland
  4. 4.Département ECOEVOInstitut d’Ecologie et des Sciences de l’Environnement de Paris (IEES, Paris), équipe Biologie des termites et fonctionnement des écosystèmes tropicaux (EcoTerm), Centre IRD France NordBondyFrance

Personalised recommendations