Antonie van Leeuwenhoek

, Volume 111, Issue 3, pp 479–483 | Cite as

Haematospirillum and insect Wolbachia DNA in avian blood

  • Sándor HornokEmail author
  • Nóra Ágh
  • Nóra Takács
  • Jenő Kontschán
  • Regina Hofmann-Lehmann
Short Communication


In this study, blood samples of 259 Acrocephalus sp. warblers were molecularly analysed for Anaplasmataceae and Rhodospirillaceae based on PCR amplification of 16S rRNA gene fragments. One bird blood sample (from Reed Warbler, Acrocephalus scirpaceus) yielded a sequence with 99.8% identity to Haematospirillum jordaniae. This is the first molecular evidence for the occurrence of this species in the blood of any vertebrate other than human. Another bird blood sample (from Marsh Warbler: Acrocephalus palustris) yielded a Wolbachia sequence, closely related to a moth endosymbiont with 99.8% identity. A nematode origin of Wolbachia DNA detected here in avian blood can be excluded, because results of phylogenetic analysis showed its closest alignment with insect wolbachiae. This is the first finding of insect Wolbachia DNA in the circulatory system of birds, which can be explained either by the inoculation of wolbachiae by blood-sucking vectors, or passing of Wolbachia DNA from the gut into the blood of this insectivorous bird species.


Anaplasmataceae Aves Rhodospirillaceae 16S rRNA gene 



This study was funded by OTKA (Grant Numbers 115854 and 108571).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Research was permitted by Middle-Danube-Valley Inspectorate for Environmental Protection, Nature Conservation and Water Management (under Registration Number KTF: 27251-1/2014). Blood sampling was performed by Nóra Ágh (Certificate Registration Number 6/2015, issued by the Institutional Animal Welfare Committee).

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. Bazzocchi C, Mariconti M, Sassera D, Rinaldi L, Martin E, Cringoli G, Urbanelli S, Genchi C, Bandi C, Epis S (2013) Molecular and serological evidence for the circulation of the tick symbiont Midichloria (Rickettsiales: Midichloriaceae) in different mammalian species. Parasit Vectors 6:350CrossRefPubMedPubMedCentralGoogle Scholar
  2. Brown G, Martin A, Roberts T, Aitken R (2001) Detection of Ehrlichia platys in dogs in Australia. Aust Vet J 79:554–558CrossRefPubMedGoogle Scholar
  3. Chakravorty S, Helb D, Burday M, Connell N, Alland D (2007) A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J Microbiol Methods 69:330–339CrossRefPubMedPubMedCentralGoogle Scholar
  4. Dumler JS, Barbet AF, Bekker CPI, Dasch GA, Palmer GH, Ray SC, Rikihisa Y, Rurangirwa FR (2001) Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HGE agent’ as subjective synonyms of Ehrlichia phagocytophila. Int J Syst Evol Microbiol 51:2145–2165CrossRefPubMedGoogle Scholar
  5. Fenn K, Conlon C, Jones M, Quail MA, Holroyd NE, Parkhill J, Blaxter M (2006) Phylogenetic Relationships of the Wolbachia of Nematodes and Arthropods. PLoS Pathog 2:e94CrossRefPubMedPubMedCentralGoogle Scholar
  6. Griffiths R, Double MC, Orr K, Dawson RJG (1998) A DNA test to sex most birds. Mol Ecol 7:1071–1075CrossRefPubMedGoogle Scholar
  7. Gupta RS, Mok A (2007) Phylogenomics and signature proteins for the alpha Proteobacteria and its main groups. BMC Microbiol 7:106CrossRefPubMedPubMedCentralGoogle Scholar
  8. Hamer GL, Anderson TK, Berry GE, Makohon-Moore AP, Crafton JC, Brawn JD, Dolinski AC, Krebs BL, Ruiz MO, Muzzall PM, Goldberg TL, Walker ED (2013) Prevalence of filarioid nematodes and trypanosomes in American robins and house sparrows, Chicago USA. Int J Parasitol Parasites Wildl 2:42–49CrossRefPubMedGoogle Scholar
  9. Hornok S, Földvári G, Elek V, Naranjo V, Farkas R, de la Fuente J (2008) Molecular identification of Anaplasma marginale and rickettsial endosymbionts in blood-sucking flies (Diptera: Tabanidae, Muscidae) and hard ticks (Acari: Ixodidae). Vet Parasitol 154:354–359CrossRefPubMedGoogle Scholar
  10. Hornok S, Karcza Z, Csörgő T (2012) Birds as disseminators of ixodid ticks and tick-borne pathogens: note on the relevance to migratory routes. Ornis Hung 20:86–89Google Scholar
  11. Hornok S, Kováts D, Csörgő T, Meli ML, Gönczi E, Hadnagy Z, Takács N, Farkas R, Hofmann-Lehmann R (2014) Birds as potential reservoirs of tick-borne pathogens: first evidence of bacteraemia with Rickettsia helvetica. Parasit Vectors 7:128CrossRefPubMedPubMedCentralGoogle Scholar
  12. Humrighouse BW, Emery BD, Kelly AJ, Metcalfe MG, Mbizo J, McQuiston JR (2016) Haematospirillum jordaniae gen. nov., sp. nov., isolated from human blood samples. Antonie Van Leeuwenhoek 109:493–500CrossRefPubMedGoogle Scholar
  13. Machado RZ, André MR, Werther K, de Sousa E, Gavioli FA, Alves Junior JRF (2012) Migratory and carnivorous birds in Brazil: reservoirs for Anaplasma and Ehrlichia species? Vector-Borne Zoonotic Dis 12:705–708CrossRefPubMedGoogle Scholar
  14. Mandal RK, Jiang T, Al-Rubaye AA, Rhoads DD, Wideman RF, Zhao J, Pevzner I, Kwon YM (2016) An investigation into blood microbiota and its potential association with bacterial chondronecrosis with osteomyelitis (BCO) in Broilers. Sci Rep 6:25882CrossRefPubMedPubMedCentralGoogle Scholar
  15. McNulty SN, Fischer K, Mehus JO, Vaughan JA, Tkach VV, Weil GJ, Fischer PU (2012) Absence of Wolbachia endobacteria in Chandlerella quiscali, an avian filarial parasite. J Parasitol 98:382–387CrossRefPubMedGoogle Scholar
  16. Rossi MID, Aguiar-Alves F, Santos S, Paiva J, Bendas A, Fernandes O, Labarthe N (2010) Detection of Wolbachia DNA in blood from dogs infected with Dirofilaria immitis. Exp Parasitol 126:270–272CrossRefPubMedGoogle Scholar
  17. Serra V, Cafiso A, Bazzocchi C (2016) Molecular and serological evidences of Midichloria mitochondrii transmission to vertebrate hosts during the tick bite. In: Proceedings of Veterinary an Animal Science Days, Milan, Italy, 8–10 June 2016Google Scholar
  18. Spisák S, Solymosi N, Ittzés P, Bodor A, Kondor D, Vattay G, Barták BK, Sipos F, Galamb O, Tulassay Z, Szállási Z, Rasmussen S, Sicheritz-Ponten T, Brunak S, Molnár B, Csabai I (2013) Complete genes may pass from food to human blood. PLoS ONE 8:e69805CrossRefPubMedPubMedCentralGoogle Scholar
  19. Wang Y, Qian P-Y (2009) Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS ONE 4:e7401CrossRefPubMedPubMedCentralGoogle Scholar
  20. Xu Y, Gong P, Wielstra B, Si Y (2016) Southward autumn migration of waterfowl facilitates cross-continental transmission of the highly pathogenic avian influenza H5N1 virus. Sci Rep 6:30262CrossRefPubMedPubMedCentralGoogle Scholar
  21. Yoon JH, Kang SJ, Park S, Lee SY, Oh TK (2007) Reclassification of Aquaspirillum itersonii and Aquaspirillum peregrinum as Novispirillum itersonii gen. nov., comb. nov. and Insolitispirillum peregrinum gen. nov., comb. nov. Int J Syst Evol Microbiol 57:2830–2835CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Parasitology and ZoologyUniversity of Veterinary MedicineBudapestHungary
  2. 2.Department of Biomathematics and InformaticsUniversity of Veterinary MedicineBudapestHungary
  3. 3.Plant Protection Institute, Centre for Agricultural ResearchHungarian Academy of SciencesBudapestHungary
  4. 4.Vetsuisse Faculty, Clinical Laboratory and Center for Clinical StudiesUniversity of ZürichZurichSwitzerland

Personalised recommendations