Antonie van Leeuwenhoek

, Volume 111, Issue 2, pp 209–226 | Cite as

Biodiversity and ecology of flower-associated actinomycetes in different flowering stages of Protea repens

  • Zander R. Human
  • Casparus J. Crous
  • Francois Roets
  • Stephanus N. Venter
  • Michael J. Wingfield
  • Z. Wilhelm de Beer
Original Paper


Actinomycete bacteria have previously been reported from reproductive structures (infructescences) of Protea (sugarbush/suikerbos) species, a niche dominated by fungi in the genera Knoxdaviesia and Sporothrix. It is probable that these taxa have symbiotic interactions, but a lack of knowledge regarding their diversity and general ecology precludes their study. We determined the diversity of actinomycetes within Protea repens inflorescence buds, open inflorescences, young and mature infructescences, and leaf litter surrounding these trees. Since the P. repens habitat is fire-prone, we also considered the potential of these bacteria to recolonise infructescences after fire. Actinomycetes were largely absent from flower buds and inflorescences but were consistently present in young and mature infructescences. Two Streptomyces spp. were the most consistent taxa recovered, one of which was also routinely isolated from leaf litter. Lower colonisation rates were evident in samples from a recently burnt site. One of the most consistent taxa isolated from older trees in the unburnt site was absent from this site. Our findings show that P. repens has a distinct community of actinomycetes dominated by a few species. These communities change over time and infructescence developmental stage, season and the age of the host population. Mature infructescences appear to be important sources of inoculum for some of the actinomycetes, seemingly disrupted by fire. Increased fire frequency limiting maturation of P. repens infructescences could thus impact future actinomycete colonisation in the landscape. Streptomyces spp. are likely to share this niche with the ophiostomatoid fungi, which merits further study regarding their interactions and mode of transfer.


Proteaceae Streptomyces Cape Floristic Kingdom Sporothrix Knoxdaviesia 



We thank the National Research Foundation (NRF) and the Department of Science and Technology (DST)/NRF Centre for Tree Health Biotechnology (CTHB) for financial support. We also thank the Cape Nature Conservation Board for providing collection permits. We further wish to thank Glenda Brits from the Department of Education Innovation, University of Pretoria, for producing Fig. 3.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10482_2017_942_MOESM1_ESM.tif (1.2 mb)
Supplementary Figure S1 Regression coefficients (β), odds ratios (OR) and p-values from binary logistic regression of presence or absence of all actinomycetes, OTU1 and OTU2 in infructescences (TIFF 1244 kb)
10482_2017_942_MOESM2_ESM.docx (3.5 mb)
Supplementary Table S1 Species richness estimators and colonisation frequencies for all sample categories in this study. Table S2 Results of mixed effects models testing the effect of inflorescence organ on species richness and presence of actinomycetes. Supplementary Methods Actinomycete colonisation frequency and species richness on different P. repens flower organs (DOCX 3564 kb)


  1. Álvarez-Pérez S, Herrera CM (2013) Composition, richness and nonrandom assembly of culturable bacterial-microfungal communities in floral nectar of Mediterranean plants. FEMS Microbiol Ecol 83:685–699. doi: 10.1111/1574-6941.12027 CrossRefPubMedGoogle Scholar
  2. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi: 10.1111/j.1442-9993.2001.01070.pp.x Google Scholar
  3. Anderson M, Gorley RN, Clarke RK (2008) Permanova+ for Primer: guide to software and statisticl methodsGoogle Scholar
  4. Antony-Babu S, Stach JEM, Goodfellow M (2010) Computer-assisted numerical analysis of colour-group data for dereplication of streptomycetes for bioprospecting and ecological purposes. Antonie Leeuwenhoek 97:231–239. doi: 10.1007/s10482-009-9404-x CrossRefPubMedGoogle Scholar
  5. Aylward J, Dreyer LL, Steenkamp ET, Wingfield MJ, Roets F (2014) Panmixia defines the genetic diversity of a unique arthropod-dispersed fungus specific to Protea flowers. Ecol. Evol. 4:3444–3455. doi: 10.1002/ece3.1149 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Aylward J, Dreyer LL, Steenkamp ET, Wingfield MJ, Roets F (2015) Long-distance dispersal and recolonization of a fire-destroyed niche by a mite-associated fungus. Fungal Biol. 119:245–256. doi: 10.1016/j.funbio.2014.12.010 CrossRefPubMedGoogle Scholar
  7. Barke J et al (2010) A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biol 8:109. doi: 10.1186/1741-7007-8-109 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4. R Package Version 1:1–23Google Scholar
  9. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2013) GenBank. Nucleic Acids Res 41:D36–D42. doi: 10.1093/nar/gks1195 CrossRefPubMedGoogle Scholar
  10. Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26. doi: 10.1038/ja.2005.1 CrossRefPubMedGoogle Scholar
  11. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. doi: 10.1016/j.tree.2008.10.008 CrossRefPubMedGoogle Scholar
  12. Bond WJ (1985) Canopy-stored seed reserves (serotiny) in Cape Proteaceae. S Afr J Bot 51:181–186. doi: 10.1016/S0254-6299(16)31669-6 CrossRefGoogle Scholar
  13. Cafaro M, Currie C (2005) Phylogenetic analysis of mutualistic filamentous bacteria associated with fungus-growing ants. Can J Microbiol. doi: 10.1139/w05-023
  14. Carlsohn MR, Groth I, Tan GYA, Schütze B, Saluz HP, Munder T, Yang J, Wink J, Goodfellow M (2007) Amycolatopsis saalfeldensis sp. nov., a novel actinomycete isolated from a medieval alum slate mine. Int J Syst Evol Microbiol 57:1640–1646. doi: 10.1099/ijs.0.64903-0 CrossRefPubMedGoogle Scholar
  15. Castillo UF et al (2002) Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology 148:2675–2685. doi: 10.1099/00221287-148-9-2675 CrossRefPubMedGoogle Scholar
  16. Chao A (1987) Estimating population size for capture-recapture data wit unequal catchability. Biometrics 43:783–791CrossRefPubMedGoogle Scholar
  17. Chazdon RL, Colwell RK, Denslow JS, Guariguata MR (1998) Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of northeastern Costa Rica. (No. Man and the Biosphere Series no. vol. 20)Google Scholar
  18. Clarke KR, Warwick RM (2005) Primer-6. Natural Environment Research Council, Plymouth, EnglandGoogle Scholar
  19. Colwell RK (2005) EstimateS: statistical estimation of species richness and shared species from samples, Version 7.5Google Scholar
  20. Currie CR (2001) A community of ants, fungi and bacteria: a multilateral approach to studying symbiosis. Annu Rev Microbiol 55:357–380. doi: 10.1146/annurev.micro.55.1.357 CrossRefPubMedGoogle Scholar
  21. Currie CR, Scott JA, Summerbell RC, Malloch D (1999) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398:701–704CrossRefGoogle Scholar
  22. Davelos AL, Xiao K, Samac DA, Martin AP, Kinkel LL (2004) Spatial variation in Streptomyces genetic composition and diversity in a prairie soil. Microb Ecol 48:601–612. doi: 10.1007/s00248-004-0031-9 CrossRefPubMedGoogle Scholar
  23. Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433. doi: 10.1128/MMBR.00016-10 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Esnard J, Potter TL, Zuckerman BM (1995) Streptomyces costaricanus sp. nov., isolated from nematode-suppressive soil. Int J Syst Evol Microbiol 45:775–779. doi: 10.1099/00207713-45-4-775 Google Scholar
  25. Everest GJ, Meyers PR (2011) Evaluation of the antibiotic biosynthetic potential of the genus Amycolatopsis and description of Amycolatopsis circi sp. nov., Amycolatopsis equina sp. nov. and Amycolatopsis hippodromi sp. nov. J Appl Microbiol 111:300–311. doi: 10.1111/j.1365-2672.2011.05058.x CrossRefPubMedGoogle Scholar
  26. Farris MH, Duffy C, Findlay RH, Olson JB (2011) Streptomyces scopuliridis sp. nov., a bacteriocin-producing soil streptomycete. Int J Syst Evol Microbiol 61:2112–2116. doi: 10.1099/ijs.0.023192-0 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Frank JA, Reich CI, Sharma S, Jon S, Wilson BA, Olsen GJ, Weisbaum JS (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74:2461–2470. doi: 10.1128/AEM.02272-07 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gao B, Gupta RS (2012) Phylogenetic framework and molecular signatures for the main clades of the phylum actinobacteria. Microbiol Mol Biol Rev 76:66–112. doi: 10.1128/MMBR.05011-11 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216. doi: 10.1146/annurev.mi.37.100183.001201 CrossRefPubMedGoogle Scholar
  30. Gotelli NJ, Colwell RK (2011) Estimating species richness. In: Magurran AE, McGill BJ (eds) Biological diversity: frontiers in measurement and assessment. Oxford University Press, Oxford, United Kingdom, pp 39–54Google Scholar
  31. Guan X, Liu C, Zhao J, Fang B, Zhang Y, Li L, Jin P, Wang X, Xiang W (2015) Streptomyces maoxianensis sp. nov., a novel actinomycete isolated from soil in Maoxian, China. Antonie Leeuwenhoek 107:1119–1126. doi: 10.1007/s10482-015-0403-9 CrossRefPubMedGoogle Scholar
  32. Haeder S, Wirth R, Herz H, Spiteller D (2009) Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc Natl Acad Sci USA. 106:4742–4746. doi: 10.1073/pnas.0812082106 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  34. Hanshew AS, McDonald BR, Díaz Díaz C, Djiéto-Lordon C, Blatrix R, Currie CR (2014) Characterization of actinobacteria associated with three ant-plant mutualisms. Microb Ecol:192–203. doi: 10.1007/s00248-014-0469-3
  35. Heinze G, Schemper M (2002) A solution to the problem of separation in logistic regression. Stat Med 21:2409–2419. doi: 10.1002/sim.1047 CrossRefPubMedGoogle Scholar
  36. Heinze G, Ploner M, Dunkler D, Southworth H (2013) logistf: Firth’s bias reduced logistic regression. R Package Version, 1Google Scholar
  37. Hodgson DA (2000) Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. Adv Microb Physiol 42:47–238. doi: 10.1016/S0065-2911(00)42003-5 CrossRefPubMedGoogle Scholar
  38. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363. doi: 10.1002/bimj.200810425 CrossRefPubMedGoogle Scholar
  39. Human ZR, Moon K, Bae M, De Beer ZW, Cha S, Wingfield MJ, Slippers B, Oh DC, Venter SN (2016) Antifungal Streptomyces spp. associated with the infructescences of Protea spp. in South Africa. Front Microbiol 7:1657. doi: 10.3389/FMICB.2016.01657 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kaltenpoth M (2009) Actinobacteria as mutualists: general healthcare for insects? Trends Microbiol 17:529–535. doi: 10.1016/j.tim.2009.09.006 CrossRefPubMedGoogle Scholar
  41. Kämpfer P (2006) The family Streptomycetaceae, part I: taxonomy. In: The prokaryotes. Springer, New York, NY, pp. 538–604. doi: 10.1007/0-387-30743-5_22
  42. Katoh K, Kuma KI, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al (2012) Introducing EzTaxon: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721. doi: 10.1099/ijs.0.038075-0 CrossRefPubMedGoogle Scholar
  44. Korner-Nievergelt F, Roth T, Felten Sv, Guélat J, Almasi B, Korner-Nivergelt P (2015) Bayesian data analysis in ecology using linear models with R, BUGS, and Stan. Elsevier. doi: 10.1007/s13398-014-0173-7.2
  45. Kruger FJ (1983) Plant community diversity and dynamics in relation to fire. In: Kruger FJ, Mitchell DT, Jarvis JUM (eds) Mediterranean-type ecosystems: the role of nutrients. Springer,, Berlin, pp 446–472. doi: 10.1007/978-3-642-68935-2_23
  46. Le Maitre DC (1987) Dynamics of canopy stored seed in relation to fire. National Scientific Programmes Unit, CSIR, PretoriaGoogle Scholar
  47. Le Maitre DC, Midgley JJ (1992) Plant reproductive ecology. Oxford University Press, OxfordGoogle Scholar
  48. Lechevalier HA, Lechevalier MP (1967) Biology of actinomycetes. Annu Rev Microbiol 21:71–100. doi: 10.1146/annurev.mi.21.100167.000443 CrossRefPubMedGoogle Scholar
  49. Lee HJ, Whang KS (2014) Streptomyces graminifolii sp. nov., isolated from bamboo (Sasa borealis) litter. Int J Syst Evol Microbiol 64:2517–2521. doi: 10.1099/ijs.0.056895-0 CrossRefPubMedGoogle Scholar
  50. Liu N, Wang H, Liu M, Gu Q, Zheng W, Huang Y (2009) Streptomyces alni sp. nov., a daidzein-producing endophyte isolated from a root of Alnus nepalensis D. Don. Int J Syst Evol Microbiol 59:254–258. doi: 10.1099/ijs.0.65769-0 CrossRefPubMedGoogle Scholar
  51. Manning J, Goldblatt P (2012) Plants of the greater Cape Floristic Region 1: the Core Cape flora. South African National Biodiversity InstituteGoogle Scholar
  52. Mason CJ, Zeldin EL, Currie CR, Raffa KF, McCown BH (2014) Populations of uncultivated American cranberry in sphagnum bog communities harbor novel assemblages of Actinobacteria with antifungal properties. Botany 92:589–595. doi: 10.1139/cjb-2014-0025 CrossRefGoogle Scholar
  53. Maxam M, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci USA 74:560–564. doi: 10.1073/pnas.74.2.560 CrossRefPubMedPubMedCentralGoogle Scholar
  54. McDonald JH (2009) Handbook of biological statistics. Sparky House Publishing, Baltimore, MD. doi: 10.1017/CBO9781107415324.004 Google Scholar
  55. Mitchell DT, Coley PGF (1987) Litter production and decomposition from shrubs of Protea repens growing in sand plain lowland and mountain fynbos, south-western Cape. S Afr J Bot 53:25–31CrossRefGoogle Scholar
  56. Nimaichand S, Tamrihao K, Yang LL, Zhu WY, Zhang YG, Li L, Tang SK, Ningthoujam DS, Li WJ (2013) Streptomyces hundungensis sp. nov., a novel actinomycete with antifungal activity and plant growth promoting traits. J Antibiot 66:205–209. doi: 10.1038/ja.2012.119 CrossRefPubMedGoogle Scholar
  57. Passari AK, Mishra VK, Saikia R, Gupta VK, Singh BP (2015) Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential. Front Microbiol 6:273. doi: 10.3389/fmicb.2015.00273 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Pearce DA, Bridge PD, Hughes KA, Sattler B, Psenner R, Russell NJ (2009) Microorganisms in the atmosphere over Antarctica. FEMS Microbiol Ecol 69:143–157. doi: 10.1111/j.1574-6941.2009.00706.x CrossRefPubMedGoogle Scholar
  59. Pretorius J (1985) Correct terminology for Protea inflorescences. In: International protea research symposium 185, pp. 277–280Google Scholar
  60. R Developmental Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  61. Riedlinger J, Schrey SD, Tarkka MT, Hampp R, Kapur M, Fiedler HP (2006) Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505. Appl Environ Microbiol 72:3550–3557. doi: 10.1128/AEM.72.5.3550-3557.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Roets F, Dreyer LL, Crous PW (2005) Seasonal trends in colonisation of Protea infructescences by Gondwanamyces and Ophiostoma spp. S Afr J Bot 71:307–311CrossRefGoogle Scholar
  63. Roets F, Wingfield MJ, Crous PW, Dreyer LL (2007) Discovery of fungus-mite mutualism in a unique niche. Environ Entomol 36:1226–1237. doi: 10.1093/ee/36.5.1226 CrossRefPubMedGoogle Scholar
  64. Roets F, Crous PW, Wingfield MJ, Dreyer LL (2009) Mite-mediated hyperphoretic dispersal of Ophiostoma spp. from the infructescences of South African Protea spp. Environ Entomol 38:143–152. doi: 10.1603/022.038.0118 CrossRefPubMedGoogle Scholar
  65. Roets F, Wingfield MJ, Wingfield BD, Dreyer LL (2011) Mites are the most common vectors of the fungus Gondwanamyces proteae in Protea infructescences. Fungal Biol 115:343–350. doi: 10.1016/j.funbio.2011.01.005 CrossRefPubMedGoogle Scholar
  66. Ruddick SM, Williams ST (1972) Studies on the ecology of actinomycetes in soil V. Some factors influencing the dispersal and adsorption of spores in soil. Soil Biol Biochem 4:93–103. doi: 10.1016/0038-0717(72)90046-6 CrossRefGoogle Scholar
  67. Sánchez S et al (2010) Carbon source regulation of antibiotic production. J Antibiot 63:442–459. doi: 10.1038/ja.2010.78 CrossRefPubMedGoogle Scholar
  68. Sardi P, Saracchi M, Quaroni S, Petrolini B, Borgonovi GE, Merli S (1992) Isolation of endophytic Streptomyces strains from surface-sterilized roots. Appl Environ Microbiol 58:2691–2693PubMedPubMedCentralGoogle Scholar
  69. Sarria-Guzmán Y, Chávez-Romero Y, Gómez-Acata S, Montes-Molina JA, Morales-Salazar E, Dendooven L, Navarro-Noya YE (2016) Bacterial communities associated with different Anthurium andraeanum L. Plant Tissues. Microbes Environ 31:321–328. doi: 10.1264/jsme2.ME16099 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Schloss PD et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi: 10.1128/AEM.01541-09 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Scott JJ, Oh DC, Yuceer MC, Klepzig KD, Clardy J (2008) Bacterial protection of beetle-fungus mutualism. Science 322:2008. doi: 10.1126/science.1160423 CrossRefGoogle Scholar
  72. Seipke RF, Kaltenpoth M, Hutchings MI (2012) Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbiol Rev 36:862–876. doi: 10.1111/j.1574-6976.2011.00313.x CrossRefPubMedGoogle Scholar
  73. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. J Chem Inf Model 53:1689–1699. doi: 10.1017/CBO9781107415324.004 Google Scholar
  74. Skarbek JD, Brady LR (1978) Streptomyces cavourensis sp. nov. (nom. rev.) and Streptomyces cavourensis subsp. washingtonensis subsp. nov., a chromomycin-producing subspecies. Int J Syst Evol Microbiol 28:45–53. doi: 10.1099/00207713-28-1-45 Google Scholar
  75. Szumilas M (2010) Explaining odds ratios. J Can Acad Child Adolesc Psychiatry 19:227–229. doi: 10.1136/bmj.c4414 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Taechowisan T, Peberdy JF, Lumyong S (2003) Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J Microbiol Biotechnol 19:381–385. doi: 10.1023/A:1023901107182 CrossRefGoogle Scholar
  77. Takasuka TE, Book AJ, Lewin GR, Currie CR, Fox BG (2013) Aerobic deconstruction of cellulosic biomass by an insect-associated Streptomyces. Sci Rep 3:1030. doi: 10.1038/srep01030 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Theron N, Roets F, Dreyer LL, Esler KJ, Ueckermann EA (2012) A new genus and eight new species of Tydeoidea (Acari: Trombidiformes) from Protea species in South Africa. Int J Acarol 38:257–273. doi: 10.1080/01647954.2011.619576 CrossRefGoogle Scholar
  80. Van Dissel D, Claessen D, van Wezel GP (2014) Morphogenesis of Streptomyces in submerged cultures. Adv Appl Microbiol 89:1–45. doi: 10.1016/B978-0-12-800259-9.00001-9 CrossRefPubMedGoogle Scholar
  81. Van Wilgen BW (1987) Fire regime in the fynbos biome. National Scientific Programmes Unit: CSIR, SANSP Report 135Google Scholar
  82. Van Wyk BE, Nicolson SW (1995) Xylose is a major nectar sugar in Protea and Faurea. S Afr J Sci 91:151–153Google Scholar
  83. Vu VQ (2011) ggbiplot: A ggplot2 based biplot. R package version 0.55Google Scholar
  84. Watve MG, Tickoo R, Jog MM, Bhole BD (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176:386–390. doi: 10.1007/s002030100345 CrossRefPubMedGoogle Scholar
  85. Werle E, Schneider C, Renner M, Völker M, Fiehn W (1994) Convenient single-step, one tube purification of PCR products for direct sequencing. Nucleic Acids Res 22:4354–4355. doi: 10.1093/nar/22.20.4354 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Wright MG, Samways MJ (1999) Plant characteristics determine insect borer assemblages on Protea species in the Cape Fynbos, and importance for conservation management. Biodivers Conserv 8:1089–1100. doi: 10.1023/A:1008880618304 CrossRefGoogle Scholar
  87. Zhang Q, Li WJ, Cui XL, Li MG, Xu LH, Jiang CL (2003) Streptomyces yunnanensis sp. nov., a mesophile from soils in Yunnan, China. Int J Syst Evol Microbiol 53:217–221. doi: 10.1099/ijs.0.01851-0 CrossRefPubMedGoogle Scholar
  88. Zhao K et al (2012) The rhizospheres of traditional medicinal plants in Panxi, China, host a diverse selection of actinobacteria with antimicrobial properties. Appl Microbiol Biotechnol 94:1321–1335. doi: 10.1007/s00253-011-3862-6 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Microbiology and Plant Pathology, Forestry and Agriculture Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
  2. 2.Department of Plant and Soil Sciences, Forestry and Agriculture Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
  3. 3.Faculdade de Ciências, Centre for Ecology, Evolution and Environmental Changes (cE3c)Universidade de LisboaLisbonPortugal
  4. 4.Department of Conservation Ecology and EntomologyStellenbosch UniversityStellenboschSouth Africa

Personalised recommendations