Advertisement

Antonie van Leeuwenhoek

, Volume 110, Issue 12, pp 1647–1657 | Cite as

Polyamine-binding protein PotD2 is required for stress tolerance and virulence in Actinobacillus pleuropneumoniae

  • Zhuang Zhu
  • Qin Zhao
  • Yu Zhao
  • Fei Zhang
  • Xintian Wen
  • Xiaobo Huang
  • Yiping Wen
  • Rui Wu
  • Qigui Yan
  • Yong Huang
  • Xiaoping Ma
  • Xinfeng Han
  • Sanjie CaoEmail author
Original Paper
  • 249 Downloads

Abstract

Actinobacillus pleuropneumoniae is the cause of porcine contagious pleuropneumonia, which is one of the most important respiratory diseases in swine and causes huge economic losses in the swine industry. PotD, a polyamine-binding protein, has been well characterised in many pathogens of humans and animals. In this study, a ΔpotD2 mutant of A. pleuropneumoniae strain MS71 (serovar 1) was constructed successfully by homologous recombination. Growth curves of different strains showed that the growth of the ΔpotD2 mutant was affected greatly in the logarithmic phase compared with that of parental strain. In vitro stress assays revealed that the viability of ΔpotD2 mutant strain was significantly impaired under multiple environmental stresses, including high temperature, oxidation and hyperosmosis. Additionally, the ΔpotD2 mutant caused significantly decreased mortality in a mouse model. Taken together, the findings in this study suggest an important role of PotD2 in the growth, stress tolerance and virulence of A. pleuropneumoniae.

Keywords

Actinobacillus pleuropneumoniae potD2 gene Stress tolerance Virulence 

Notes

Acknowledgements

This research was financially supported by a grant from the Special Fund for Agro-Scientific Research in the Public Interest (No. 201303034) and a grant from the Special Fund for Sichuan Science and Technology Support Program (No. 2013NZ0056).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethic approval

The animal experiments were conducted in strict accordance with the recommendations in the China Regulations for the Administration of Affairs Concerning Experimental Animals (1988) and had been approved by the Institutional Animal Care and Use Committee of Sichuan Agricultural University (Approval Number BK2014-047), Sichuan, China.

References

  1. Blackall PJ, Klaasen HLBM, Bosch HVD, Kuhnert P, Frey J (2002) Proposal of a new serovar of Actinobacillus pleuropneumoniae: serovar 15. Vet Microbiol 84:47–52CrossRefPubMedGoogle Scholar
  2. Bossé JT, Janson H, Sheehan BJ, Beddek AJ, Rycroft AN, Kroll JS, Langford PR (2002) Actinobacillus pleuropneumoniae: pathobiology and pathogenesis of infection. Microbes Infect 4:225–235CrossRefPubMedGoogle Scholar
  3. Bussière FI, Chaturvedi R, Cheng Y, Gobert AP, Asim M, Blumberg DR, Xu H, Kim PY, Hacker A, Jr CR (2005) Spermine causes loss of innate immune response to Helicobacter pylori by inhibition of inducible nitric-oxide synthase translation. J Biol Chem 280:2409CrossRefPubMedGoogle Scholar
  4. Chattopadhyay MK, Tabor CW, Tabor H (2003) Polyamines protect Escherichia coli cells from the toxic effect of oxygen. Proc Natl Acad Sci 100:2261–2265CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chaturvedi R, Asim M, Hoge S, Lewis ND, Singh K, Barry DP, De ST, Piazuelo MB, Sarvaria AR, Cheng Y (2010) Polyamines impair immunity to Helicobacter pylori by inhibiting l-arginine uptake required for nitric oxide production. Gastroenterology 139:1686CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chiang SM, Schellhorn HE (2012) Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Arch Biochem Biophys 525:161–169CrossRefPubMedGoogle Scholar
  7. Chiers K, De Waele T, Pasmans F, Ducatelle R, Haesebrouck F (2010) Virulence factors of Actinobacillus pleuropneumoniae involved in colonization, persistence and induction of lesions in its porcine host. Vet Res 41:65CrossRefPubMedPubMedCentralGoogle Scholar
  8. Childs AC, Mehta DJ, Gerner EW (2003) Polyamine-dependent gene expression. Cell Mol Life Sci 60:1394CrossRefPubMedGoogle Scholar
  9. Chung JW, Küster-Schöck E, Gibbs BF, Jacques M, Coulton JW (2012) Immunoproteomic analyses of outer membrane antigens of Actinobacillus pleuropneumoniae grown under iron-restricted conditions. Vet Microbiol 159:187–194CrossRefPubMedGoogle Scholar
  10. Durand JMB, Björk GR (2003) Putrescine or a combination of methionine and arginine restores virulence gene expression in a tRNA modification-deficient mutant of Shigella flexneri: a possible role in adaptation of virulence. Mol Microbiol 47:519–527CrossRefPubMedGoogle Scholar
  11. Fang X, Zhang Y, Gang L, Long Z, Liu S, Wang C (2013) The ClpP protease is required for the stress tolerance and biofilm formation in Actinobacillus pleuropneumoniae. PLoS ONE 8:e53600CrossRefGoogle Scholar
  12. Hara T, Matsuyama S, Tokuda H (2003) Mechanism underlying the inner membrane retention of Escherichia coli lipoproteins caused by Lol avoidance signals. J Biol Chem 278:40408–40414CrossRefPubMedGoogle Scholar
  13. Hillen S, Von BS, Köhler K, Reinacher M, Willems H, Reiner G (2014) Occurrence and severity of lung lesions in slaughter pigs vaccinated against Mycoplasma hyopneumoniae with different strategies. Prev Vet Med 113:580–588CrossRefPubMedGoogle Scholar
  14. Igarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines. Int J Biochem Cell Biol 42:39–51CrossRefPubMedGoogle Scholar
  15. Igarashi K, Ito K, Kashiwagi K (2001) Polyamine uptake systems in Escherichia coli. Res Microbiol 152:271CrossRefPubMedGoogle Scholar
  16. Iyer R, Delcour AH (1997) Complex inhibition of OmpF and OmpC bacterial porins by polyamines. J Biol Chem 272:18595–18601CrossRefPubMedGoogle Scholar
  17. Karatan E, Duncan TR, Watnick PI (2005) NspS, a predicted polyamine sensor, mediates activation of Vibrio cholerae biofilm formation by norspermidine. J Bacteriol 187:7434CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kashiwagi K, Hosokawa N, Furuchi T, Kobayashi H, Sasakawa C, Yoshikawa M, Igarashi K (1990) Isolation of polyamine transport-deficient mutants of Escherichia coli and cloning of the genes for polyamine transport proteins. J Biol Chem 265:20893–20897PubMedGoogle Scholar
  19. Kashiwagi K, Miyamoto S, Suzuki F, Kobayashi H, Igarashi K (1992) Excretion of putrescine by the putrescine-ornithine antiporter encoded by the potE gene of Escherichia coli. Proc Natl Acad Sci USA 89:4529–4533CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kurihara S, Oda S, Kato K, Kim HG, Koyanagi T, Kumagai H, Suzuki H (2005) A novel putrescine utilization pathway involves gamma-glutamylated intermediates of Escherichia coli K-12. J Biol Chem 280:4602–4608CrossRefPubMedGoogle Scholar
  21. Kurihara S, Tsuboi YS, Kim HG, Kumagai H, Suzuki H (2009) The putrescine importer PuuP of Escherichia coli K-12. J Bacteriol 191:2776CrossRefPubMedPubMedCentralGoogle Scholar
  22. Li Y, Cao S, Zhang L, Lau GW, Wen Y, Wu R, Zhao Q, Huang X, Yan Q, Huang Y, Wen X (2016) A TolC-like protein of Actinobacillus pleuropneumoniae is involved in antibiotic resistance and biofilm formation. Front Microbiol 7:1618PubMedPubMedCentralGoogle Scholar
  23. Liao Y, Deng J, Zhang A, Zhou M, Hu Y, Chen H, Jin M (2009) Immunoproteomic analysis of outer membrane proteins and extracellular proteins of Actinobacillus pleuropneumoniae JL03 serotype 3. BMC Microbiol 9:172CrossRefPubMedPubMedCentralGoogle Scholar
  24. Miyamoto S, Kashiwagi K, Ito K, Watanabe S, Igarashi K (1993) Estimation of polyamine distribution and polyamine stimulation of protein synthesis in Escherichia coli. Arch Biochem Biophys 300:63–68CrossRefPubMedGoogle Scholar
  25. Nasrallah GK, Abdelhady H, Tompkins NP, Carson KR, Garduno RA (2014) Deletion of potD, encoding a putative spermidine-binding protein, results in a complex phenotype in Legionella pneumophila. Int J Med Microbiol 304:703–716CrossRefPubMedGoogle Scholar
  26. Patel CN, Wortham BW, Lines JL, Fetherston JD, Perry RD, Oliveira MA (2006) Polyamines are essential for the formation of plague biofilm. J Bacteriol 188:2355CrossRefPubMedPubMedCentralGoogle Scholar
  27. Pistocchi R, Kashiwagi K, Miyamoto S, Nukui E, Sadakata Y, Kobayashi H, Igarashi K (1993) Characteristics of the operon for a putrescine transport system that maps at 19 minutes on the Escherichia coli chromosome. J Biol Chem 268:146–152PubMedGoogle Scholar
  28. Rider JE, Hacker A, Mackintosh CA, Pegg AE, Woster PM, Jr CR (2007) Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide. Amino Acids 33:231–240CrossRefPubMedGoogle Scholar
  29. Schiller D, Kruse D, Kneifel H, Krämer R, Burkovski A (2000) Polyamine transport and role of potE in response to osmotic stress in Escherichia coli. J Bacteriol 182:6247–6249CrossRefPubMedPubMedCentralGoogle Scholar
  30. Shah P, Swiatlo E (2008) A multifaceted role for polyamines in bacterial pathogens. Mol Microbiol 68:4–16CrossRefPubMedGoogle Scholar
  31. Shah P, Romero DG, Swiatlo E (2008) Role of polyamine transport in Streptococcus pneumoniae response to physiological stress and murine septicemia. Microb Pathog 45:167–172CrossRefPubMedGoogle Scholar
  32. Soksawatmaekhin W, Kuraishi A, Sakata K, Kashiwagi K, Igarashi K (2004) Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli. Mol Microbiol 51:1401–1412CrossRefPubMedGoogle Scholar
  33. Sugiyama S, Matsuo Y, Vassylyev DG, Matsushima M, Morikawa K, Maenaka K, Kashiwagi K, Igarashi K (1996a) The 1.8-Å X-ray structure of the Escherichia coli PotD protein complexed with spermidine and the mechanism of polyamine binding. Protein Sci 5:1984–1990CrossRefPubMedPubMedCentralGoogle Scholar
  34. Sugiyama S, Vassylyev DG, Matsushima M, Kashiwagi K, Igarashi K, Morikawa K (1996b) Crystal structure of PotD, the primary receptor of the polyamine transport system in Escherichia coli. J Biol Chem 271:9519–9525CrossRefPubMedGoogle Scholar
  35. Tkachenko AG, Nesterova LY (2003) Polyamines as modulators of gene expression under oxidative stress in Escherichia coli. Biochemistry 68:850PubMedGoogle Scholar
  36. Vega ALD, Delcour AH (1996) Polyamines decrease Escherichia coli outer membrane permeability. J Bacteriol 178:3715–3721CrossRefGoogle Scholar
  37. Yodsang P, Pothipongsa A, Mäenpää P, Incharoensakdi A (2014) Involvement of polyamine binding protein D (PotD) of Synechocystis sp. PCC 6803 in spermidine uptake and excretion. Curr Microbiol 69:417CrossRefPubMedGoogle Scholar
  38. Zhang F, Cao S, Zhu Z, Yang Y, Wen X, Chang YF, Huang X, Wu R, Wen Y, Yan Q (2016a) Immunoprotective efficacy of six in vivo-induced antigens against Actinobacillus pleuropneumoniae as potential vaccine candidates in murine model. Front Microbiol 38:728–732Google Scholar
  39. Zhang L, Li Y, Wen Y, Lau GW, Huang X, Wu R, Yan Q, Huang Y, Zhao Q, Ma X, Wen X, Cao S (2016b) HtrA is important for stress resistance and virulence in Haemophilus parasuis. Infect Immun 84:2209–2219CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Zhuang Zhu
    • 1
  • Qin Zhao
    • 1
  • Yu Zhao
    • 1
  • Fei Zhang
    • 1
  • Xintian Wen
    • 1
    • 2
  • Xiaobo Huang
    • 1
    • 2
  • Yiping Wen
    • 1
    • 2
  • Rui Wu
    • 1
    • 2
  • Qigui Yan
    • 1
    • 2
  • Yong Huang
    • 1
  • Xiaoping Ma
    • 1
  • Xinfeng Han
    • 1
  • Sanjie Cao
    • 1
    • 2
    • 3
    Email author
  1. 1.Research Center of Swine Disease, College of Veterinary MedicineSichuan Agricultural UniversityChengduChina
  2. 2.Sichuan Science-Observation Experiment of Veterinary Drugs and Veterinary Biological TechnologyMinistry of AgricultureChengduChina
  3. 3.National Teaching and Experiment Center of AnimalSichuan Agricultural UniversityChengduChina

Personalised recommendations